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Aim and Scope

The research here presented aims to design a methodology whereby the utilization of artificial intelligence techniques is
systematically and rigorously applied within the architectural design process. The main justification for the development of
such a methodology lies in the yet unsolved issues derived from the new performance-based approach to design. This ap-
proach seeks to integrate generation of forms and evaluation of their performances in order to design spatial configuration
whose morphology is emergent rather than being super-imposed. This implies the generation of forms that are the result
of a negotiation between their inherent topology and real design constraints. Although this philosophy has been applied by
many architectural practices, there is an evident lack of an organic methodology that can allow the shift from evaluation
of performances post-facto, to generation of forms by means of the evaluation of their performances. In layman terms,
simulating the behaviour of an artefact under certain conditions has been used so far in a passive way after the artefact
has already been designed. Apart from pure tensile surface structures, whose shape is not designed but is the result of a
form-finding process, there are no others relevant examples. Very sophisticated computational tools have always been used
for proving a good design idea and not as integral part of the process that brings to the formulation of the idea. Along with
this issue, a performance-based approach to design requires the utilization of different simulation software for examining
various performance aspects. Their integration, which is vital for the accuracy of the simulation and for avoiding continuous
remodelling, requires the creation of a common system for the exchanging of data and a common framework [1].

It is within this context that artificial intelligence techniques find their main justification. The introduction of these problem
solving methods might lead to create a decision support environment that can assist the designer over the architectural
design process. The way these techniques has been investigated in this research, indeed, follows the idea of considering the
design process objective oriented, where the objectives are defined by performances that have to be evolved. Stochastic
methods such as Evolutionary Algorithms and Simulating Annealing, amongst the others artificial intelligence techniques,
offer the possibility of integrating within one framework different performance simulations whereby a truly form finding
process can be achieved. Their development begun two decades ago and their contribution have been relevant to the intro-
duction of computational techniques for embracing complexity and trying to instrument its effect [1][2].

The other perspective for deploying this techniques, lies in the consideration that design optimization, using performance
simulations, can be also an aid for stimulating the designer’s creativity. Generating forms and having a simultaneous feed-
back on their behaviours, under real design constraints, would also help considering non conventional configurations of
space [1][3]. Such a design evolution method would allow for an efficient exploration of alternatives while proposing solu-
tions that are consistent with design constraints.

This body of research mainly refers to the work of Paul Coates and Christian Derix at University of East London, the work of
John Frazer at the Architectural Association, the work of David E. Goldberg, the work of Peter Bentley and Uma O’ Reilly ,
the intellectual framework first pioneered by John Holland and Richard Dawkins.

Reilly and Bentley developed an interacting software based on evolutionary algorithm and agents system called Agency Gp
tool. EifForm, developed by Kristina Shea, is a software based on simulating annealing whereby it is possible to generate
design topology and have the possibility of transforming them while maintaining a valid structural system. Gner8, devel-
oped by Martin Hemberg is an interacting software based on 3D map L-System whereby generating and evolving surfaces.
Paul Coates has been working on Genetic Programming developing numerous applications amongst which the so called
“Domino House”. Christian Derix has been working on Neural Network and their application within the architectural design
process. John Frazer, one the pioneer in the application of artificial intelligence in architecture, attempted to evolve the
rules of 3d cellular automata using evolutionary techniques.

These are some of the relevant developments made in the field upon which this body of work can build its foundations.

Contribution

This research focuses its contribution on the development of a methodology where the integration of different perform-
ance-based simulation techniques, by means artificial intelligence techniques, gives birth to an active design space in which
performance assessments move from evaluative to be generative. As already mentioned above, the lack of a common
framework for the integration of those tools undermine the possibility of using them for generating forms rather than just
evaluating them. This work aims to build the basis for the creation of such a framework in the attempt of reaching a higher
level of integration within the design process.

It is worth saying that most of the performance-based software available at the moment require a high level of detailing,
expert knowledge from users and are very expensive in terms of computational resources and time.

With regard to this issue, this work also aims to develop a lower resolution of some of them for increasing the possibility of
their integration within one framework and their utilization at conceptual level.




Intro

We begin by presenting the description of some of the developed techniques of the field. Their utilization and further
development, within the architectural design process, is focussed on the aid that they might provide when elaborating
spatial configurations. Considering that the qualities of a space can not been fully understood until this space is used, the
generation of spatial configurations has to undergo a reposition in the design process due to the limitations of deterministic
approach. A space can be fully regard as a “complex system”. This implies that the repercussion of design choices can be
foreseen only to a certain extent using a conventional approach. The instrumenting of techniques that can embrace com-
plexity can lead to a better understanding of the problem of emergence and its contextualisation within the architectural
design process [4].

Cellular Automata

Cellular Automata are system based on cellular entities whose states depends on their previous state and on the one of
their neighbours. This system performs complex outcomes by implementing simple rules that affect only local relations of
their components. The system is usually described as a grid in 1,2 or 3 dimensions which might have any number of cells.
Each cell has a neighbourhood which is constituted by a selection of finite number of other cells that affect its state. The
rules are applied to the whole grid for each cell in the same way but go through the system only by means of the interaction
between neighbours. First developed by Stainslaw Ulam and John von Neumann in the 1940s these system have been ex-
plored by many others amongst who Knorad Zuse and Stephen Wolfram. Probably the most famous CA (Cellular Automata)
is the one developed by John Conway which was called Game of Life. Although the rules governing the state of the cells
were elementary simple, the system presents an almost infinite amount of behaviours going from random to ordered pat-
terns. My exploration of these systems focuses on 2 dimensional and 3 dimensional grids where the local rules affect the
coordinates of nodes or the density of pixels of which they are made respectively.

Fig1 shows the final outcome for a 3D CA which starts from a grid of pixels. Every iteration each cells check in its 3D neigh-
bourhood (the 27 cells surrounding it) if a certain fixed value of volumetric density has been reached. If the answer is nega-
tive it will create a smaller copy at a random position in its surroundings which will be subtracted to it by means of boolean
operations. This repeats for each cell in the whole grid until the threshold has been reached. Once again a very simple rule
produces impressive complex outcome(fig1). Figl shows also the model obtained with 3D prototype technique which was
sponsored by the AEDAS an international architectural practice.

Agent based System

Agents can be thought as small algorithms based on a set of rules whereby different reactions can be simulated when
encountering different situations. There are two main type of agents : dumb agent ,and intelligent agent. The first one
behaves according to the some rules and cannot modify them, the second one is able to learn from the environment in
which is placed and infer decisions.

There are several type of agents which are classified according to the type of mechanism that drives their behaviour. This
can be constituted by simple movement rules, trail formation or even physical particle properties.

One of the most interesting type of autonomous agents are what what is called “Boids”, first conceived by Craig Reynolds.
Every entity of this system behaves according to only three rules: cohesion within the swarm, alignment to the direction of
flock members, and repulsion when another entity comes too close in order to avoid collision. Fig3 shows the lines traced
by the swarm during the simulation which truly resembles the flock of birds.

Another interesting type of agent is the one whose behaviour is governed by only simple rules of attraction and repulsion.
There are some agent that can attract the others entities who can only repel each other. By tuning these simple rules ac-
cording to the configuration of the system many interesting outcomes can be observed such as the formation of spontane-
ous Voronoi Diagram, both 2D and 3D, and the configuration shown in fig4.

Agent systems can be used for simulating complex people interactions such as pedestrian flow or crowds effects. Alasdair
Turner at the UCL developed several applications using axial analysis and agents based system. Paul Coates and Christian
Derix recently designed SSSP which stands for smart solution for spatial planning part of the Urban Buzz iniziative.

Figl 3D CA render 3D prototype

Fig2 Boids Fig3 attract and repel




Evolutionary Strategies

These strategies was first introduced by Rechenberg in1963 as optimization tools for aereodynamic wing design. They
mimic Darwin’s Theory of Evolution by evolving generations of configurations under the pressure of an environment.
They mainly use mutation and selection as search operators which are applied iteratively until termination criteria are
met. At each iteration an entire set of configurations is generated and evaluated according to specified criteria. The best
performing individuals (configurations) are selected and their genome, which is the set of information whereby they are
represented, is mutated. The selection operator in these techniques is deterministic because is based on the fitness rank-
ing and not on the fitness value of the individual. The fitness is in general a value that represent the performance of the
configuration under certain design constraints. Every time an individual is selected, its genome , which in general is con-
stituted by a vector of numbers, can mutate and only if the mutant has an higher fitness value it becomes the parent for
next generation.

ES can tackle multi objectives optimization problems where there is not one best solution that can be achieved, but rather
a set of optimum solutions, which is the reason why it operates evolving set of configurations.

Genetic Algorithm

The structure of this technique is mainly based on the same operators of Evolutionary Strategies with the difference that
the generated configurations are not only selected and mutated but also recombined. This entails a more sophisticated
encoding of the set of information that constitute their genome because thy have to be recombined in a coherent man-
ner. Useful information have to be preserved in order to be transmitted to next generations. The operation of recombining
the genome of selected individuals is called crossover. In addition the selection procedure is not deterministic but rather
stochastic. There are several technique of selection which share the same principle of giving high probability to the fitter
configurations to be chosen but also leaving a certain probability to the less fit ones. This is mainly due to the fact that some
informations encoded in the less fit configurations can turn to be useful over generations.

Genetic Algorithm are more efficient in complex search spaces and have less problem in encountering local maximum re-
spect to Evolution Strategies which is mainly due to the cross over operation.

We will examine in the details this technique, which constitutes the core of our system.
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Genetic Programming

One of the main limit of Genetic Algorithm is the lack of clear distinction between genotype and phenotype. The pheno-
type in GA is the direct decoding ,filtered by different procedures, of the information enclosed in the genome. This entails
the impossibility for the developmental process, which is the set of rules or procedures that operate on the genome for
producing the phenotype, to evolve. Genetic Programming might be the answer to overcome this problem. Although can
be considered as a generalization of Genetic Algorithm, they work evolving instead that set of configurations, the proce-
dures that generate the configurations. The individuals are usually represented as a tree structure where each node has an
operator function and each terminal node has an operand. The tree structure replaces the concept of genome in Genetic
Algorithm and it is constituted by the rules that define the developmental process of the configuration. In this way there
is not direct encoding of it and the system can develop its own hierarchy autonomously. When cross over is performed for
two selected individuals, one of the node is switched with another node from another individual replacing an entire branch
(fig1, taken from the forthcoming book Programming Architecture written by Paul Coates). It is easily imaginable how dif-
ferent can be individuals from one generation to the next one.

Artificial Neural Network

Artificial neural networks are computer systems based on a connectionist approach to computation. Simple nodes are
connected together to form a network of nodes. Artificial neural networks are quite different from the brain in terms of
structure. Like a brain, however, a neural net is a parallel collection of small and simple processing units. However in terms
of scale a brain is massively larger than a neural network and the units used in a neural network are typically far simpler
than neurons as well as the learning algorithms. A typical neural network consists of a set of nodes. Some of these are
designated input nodes, some output nodes, and those which are neither are referred to as hidden nodes (fig2). There will
be connections between the neurons and a weight is associated with each connection. When the network is in operation,
values will be applied to the input nodes; these are then passed through weights and a simple computation is performed
in each node. These results are then passed through each node in turn until it reaches the output node (fig2).

Typically the weights in a neural network are set to small random values; this represents the network knowing nothing. As
the training process proceeds, these weights will converge to values allowing them to perform a useful computation. When
a neural net is first started, it is nothing but a set of input nodes, hidden nodes, and output nodes.

A node is just the term for one of the pseudo-neurons. An outside system (environmental sensors, or perhaps some other
program) provides the input by placing values in the input nodes. By performing a set of calculations upon those nodes, the
internal nodes are calculated, and then the output nodes.

Multi-layer perceptron networks use a variety of learning techniques, the most popular being back propagation. Here the
output values are compared with the correct answer, and through various techniques the error is fed back through the
network, which adjusts the calculation performed by each node to make it slightly closer to correct. It is provable that a
multi-layer perceptron network (given sufficient nodes) is capable of learning any continuous real function to arbitrary ac-
curacy. Neural Network can be also classified in two general categories according to the type of learning algorithm.
Supervised learning which incorporates an external teacher, so that each output unit is told what its desired response to
input signals ought to be. During the learning process global information may be required. Paradigms of supervised learn-
ing include error-correction learning, reinforcement learning and stochastic learning. An important issue concerning su-
pervised learning is the problem of error convergence, the minimization of error between the desired and computed unit
values. The aim is to determine a set of weights which minimizes the error. One well-known method, which is common to
many learning paradigms, is the least mean square (LMS) convergence.

Unsupervised learning uses no external teacher and is based upon only local information. It is also referred to as self-
organization, in the sense that it self-organizes data presented to the network and detects their emergent collective prop-
erties. We will describe in details an unsupervised neural network SOM (Self Organising Map) in the discussion of the final
experiment.

—
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Abstract

The following part of this document presents the description of three experiments whereby we attempted to lay the foun-
dations of our methodology. The diagram shown in next page represents, very synthetically, the main steps for our design
system.

- topology

shifting from the design of spatial configurations to the design of systems that can generate them, we start defining the
topology that we are interested to explore. The study of properties of the topology and the main features of what will be
its environment lead to define the principles that guide the whole process (fitness criteria).

- method of representation

once topology and design constraints have been defined, we need to find a method that allow the abstract representation
of the family of spatial configurations that belongs to the chosen topology. This can be done by building a system that oper-
ate on geometric operations, it can be based on others techniques such as Cellular Automata and Agent Based System or
combination of them. This system, which can be regarded as the generative system, has to be encoded algorithmically in
a formal language in order to generate considerable amount of configurations in reasonable amount of time. Out of the
description of the method of representation come the definition of the design variables and their correspondent solution
domain.

- evolution

the strategy that has been adopted for searching through the solution domain is Genetic Algorithm. Before designing the
layout of such a technique, we have to translate the design variables in a grammar that can be understood by this “ma-
chine”. The crucial part in this procedure is the definition, or better saying, the translation in the formal language of the
design principles (fitness function). This is the way by which the generated configuration will be evaluated and return a
feedback that has to guide their evolution. The designer has to customise this procedure according to type of architectural
scenario in which he/she operates.

- design brief

the exhaustive exploration of the solution domain that belongs to the chosen family of spatial configuration lead to a set
of possible solutions for an n-dimentional problem as the design process can be considered to be. The generation of forms
by means of the evaluation of their behaviours under specified design constraints, can lead to consider patterns that we
would have not come across if we had proceeded with traditional method. This is mainly due to the impossibility for us to
design more than one layout at time and to explore all possible combinations of the variables. Navigating through the final
outcome of such a system can help the designer in the formulation of a possible design brief.

The central part of my research is the practical implementation of the proposed design system where design has been
mainly considered as an objective driven task. The first experiment shows the unfolding of the techniques necessary to
govern and customise the Genetic Algorithm. The second experiment presents the implementation of the method of repre-
sentation based on a system different from a traditional geometric definition in order to show other possible ways to define
the developmental process. The third experiment is where | tried to deploy the possibilities offered by an evolutionary
technique at most and to position the design system towards an architectural scenario.

Although encountering difficulties in handling the complex interactions between the design parameter and the variables
involved in the process, these experiment demonstrate the possibility offered by such a system and allow to speculate to
its further implementation.




Topology Material system |—— Encode design variables in Genetic Algorithm grammar
| Making genome for each individual in population
Preliminary study of Define fitness l

topology features SIt€ condition criteria l !

Construction
techniques

Choose the dimension of the domain to be explored |: Preliminary set of weights for fitness values ]

Preliminary set of mutation rate
I

|

Decode geometric features — reconstruction of body plan

l yes

Topology Representation Generation(i) T

l Structural feedback i=i+1 no «+— satisfied

¥ Termination Criteria

\ 4
A

Cellular

; Ent Evaluate fitness each
Geometric Automata Agent based system nvironmental feedback

initi . ind i individual in population
definition st description Wln(.:I influence pop
Sun influence l

Natural selection - roulette

Spatial analysis Chose method )
Y Geometrical analysis for Selection Rank selection
Select key features for method of representation Circulation analysis

il Tournament selection

Selection

Rescale weights for fitness
Encode key features l

Artificial Neural Network

4 Crossover —encoding

Encode method of representation genome. for next
generation

‘ '

Select design variables Mutation

Aesthetic considerations

Representing the topology /Critical considerations

Design Brief

Further
Fitness Criteria /Critical considerations analysis/development
(Artificial Neural Networks)

Termination criteria/ Critical considerations

t - topology r— representation e = evolution d-» design brief




1% experiment

This discussion of this first experiment means to give a general understanding of the logic of the “machine” that governs
the core of our proposed methodology. It can be regarded as a system in which spatial configurations are created and
evolved under certain design constraints. The deep knowledge of the computational scheme that builds this machine is
a fundamental requirement if one want to speculate on a possible design brief resulting from it. The experiment here re-
ported, which was my first early attempt to engage with artificial intelligence techniques, illustrates step by step the basic
procedures for the development of a Genetic Algorithm whose aim is to find a balanced solutions (often called optimum) to
a problem which might have n-indipendent variables. In order to understand if a combination of the values of this variables
constitutes a good or a bad solution of our problem, we could proceed in a step by step iteration of all possible combina-
tions. However, even when the number of variables and the one of the values of each of them is relatively small, it would
require a great amount of time. We will see, over the course of the three experiments, that if properly instrumented a Ge-
netic Algorithm reduces to a reasonable amount the required time, while offering the opportunity to make an exhaustive
exploration amongst all the possible combination of configurations.

We leave at later time (2™ and 3 experiment) the explanation of the developed framework that surrounds and interacts
with the “machine” and the unfolding of the strategies to contextualise our proposed methodology in an architectural
scenario.

Encoding the body plan

As already said in the introduction, a genetic algorithm works evolving entire sets of configurations which are so called
populations or generations. The members, that build up the generations, are what we call “individuals”. Each individual is
generated starting from a very compact kit of informations that, resembling the biological terminology, is named genome.
The individuals can be regarded as the output of a system, the generative system, that receives as input their genome and
produces their physical representation. There have been some works on the development of generative systems that allow
the evolution of the developmental process, which is the set of laws whereby the phenotype is created. However, for the
time being, this goes beyond the scope of our research.

Our generative system is made of two simple procedures. The first one in the encoding of the values, for the variables of
our problem, in strings of binary numbers (0&1) that represent the genome of the individuals [2]. The second is the formu-
lation of a set of rules whereby these information can be represented.

Fig3, next page, shows the body plan of an individual whose morphology is one of the possible representation of the to-
pology that we are interested to explore. In this way the variables of our problem are the position of points whereby the
geometry of the individuals can be described and their values constitute pieces of the genome.

The body plan has been obtained by drawing 4 points each section (fig2, first floor) and afterwards building triangulated
panels between two consecutive floors (fig2, truss structure). If the height of the floors is fixed, it needs 2 numerical values
each point. Therefore, if the number of floors is 10, the solution domain is a permutation of 80 independent values which
is factorial 80. The size of the solution domain depends also by the range of values that each variables has. We can choose
this range according to how vast we want the exploration to be and the available computational recourses. In this example
I choose to encode these values in strings of length 5 which means that, as we will see in next paragraph, there are 31 pos-
sible representation for each gene. Figl shows a piece of the genome that represents an entire section of the body plan of
the individual.

genes | 00111 | 00100 | 11100 | 00100 | 11000 | 11111 | OOO10 | 10101

Point 4

Point 3

L » Point2

L Pointl
Figl
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| point2 (28,8)
first floor pointl (7,4)

first floor + second floor

truss structure

glazing
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Decoding the genome
The decoding system is simple and can be explained in three steps:

- once the size of the solution domain has been decided, strings of binary number in random order are generated. This is
the first step where the first generation is initialised.

- according to the size of the solution domain a string representing one of the gene can have a certain length. We start it
reading it from left and multiply each number by 2 (fig2). According to the position in the string, 2 is raised at a certain
power starting from 0 for the first position (right end) and ending with a number which is equal to the length of the string
minus 1 (left end). The sum of this products represents the value of the variables which in this case are coordinates (x,y,z)
and 3D points respectively [2][2].

- once all the genes have been decoded they are ready to be used in order to build the virtual representation of the in-
dividual. Fig2, previous page, shown the sequence of building for one of the floor/section. The main justification for the
encoding-decoding procedure lies in the advantage that strings of binary number offer when performing cross-over be-
tween the genome of the selected configurations (see page 13).

The range of values that it is possible to decode depends on the length of the strings. If the string representing the coor-
dinate of the points is made of 5 bits, the maximum value is 31; if the length of the string was 6, then the maximum value
would be 63 and so forward.

The whole genome

Considering that in this example each gene (string of 0&1) is made of 5 bits and there are 80 genes per individual, the
number of possible permutations is (80*5) factorial [3]. This number can be considered as infinite as it would be the time
that such a big permutation would require if it were done in a step by step iteration. Genetic algorithms instead operate
searching the solution domain by quickly discarding configurations that do not respect specified design criteria. Successive-
ly, the genome of the selected individuals are manipulated by breeding and mutation in order to reach better configuration
[3]112]. It is evident that the definition of design constraints and the development of a system, whereby these morphologies
can be evaluated, is crucial for driving the evolution. Figl shows the entire genome that encloses the necessary information
for reproducing the body plan of the individuals.

00111 | Q00100 | 11100 | OO100 | 11000 | 11111 | Q0010 | 10101

10000 | 10101 | 11110 | 00111 | ©01110 | 11100 | 10110 | 11101

01111 | 11100 | 00100 | 00100 | 10001 | 10111 | 00011 | 10111

00100 | 00001 | Q1010 | ©O1010 | 11010 | 10011 | 11010 | 11101

00011 | 01100 | 11000 | 10100 | 01010 | 11110 | Q0110 | 10001

decoding

11111 | 11010 | 10000 ( 0OO111 | 10000 | 10101 | 10010 | 10101

Q0010 | 00100 | 00100 | 10101 | 01000 | 10111 | 01010 | 10111

10011 | 00111 | 11000 | 01101 | 11010 | ©0111 | 11110 | 00101

01101 | 11111 | 11001 | 10100 | 11001 | 11101 | 11010 | 00001

Qo011 | 10100 | 10010 | 11100 | 11100 | ©0111 | 10010 | 10001

00111 | Q0101 | 01100 | 10100 | 11100 | 11011 | 01110 | OO0101

Figl

Y

Fig2

Fig3

value

max value

min value

10101

11111

00000

.................... _.h.

................... .

1% 20 gF i gnpgF ol e anl gy

1* 2n4+1* 24\3_{_1*2:\2_,_1* 2n1+1$ 2;\0:31

n* 2"\4‘1'0* 2.:\3-+U$2.|\Z+U$ 2n1+u$ 2"‘[': 1

11



Fitness Criteria

The fitness function evaluates the individuals of the population and assigns a numerical value according to the objectives to
be optimised. When evolving spatial configurations there are many criteria that can be used for influencing their develop-
ment: structural, spatial organization, daylight exposure, to mention a few.

Those are the fitness criteria that will guide the algorithm through the searching of spatial configurations which respond
positively to their evaluation. By continuously testing the individuals over generations, the fitness criteria filter the informa-
tion that are useful for the individuals to behave according to the environment in which they are placed. It is an indirect
control on their morphology as well as abstract is the representation of their topology that we encoded. The way the fit-
ness criteria are implemented, in order to combine their values and make the individual’s fitness, is called fitness function.
This can be regarded as the representation of the “environment” that we referred before. In this experiment we drive the
evolution taking into account only one criteria but there may be several of these. When having more than one parameter,
it is clear that they have to be comparable in order to build a value that represent the fitness of the individual as a whole.
In general, most of the times, fitness parameter have different dimension and magnitude and, therefore, they need to be
scaled and weighted. We will see in the 2" and 3™ experiment, where the number of fitness criteria goes up to seven, how
these procedures can be embedded in the fitness function, along with several techniques that can be deployed for imple-
menting it.

Solar gain

The criteria of evaluation for the configuration of this experiment is the maximization of the interception of daylight.

For performing this kind of analysis there are many available commercial software, such as Ecotect, but considering the
number of simulations that should be done each generation, this would require an amount of time that does not match our
recourses. In addition, using an external software adds another layer of complexity to the implementation of the procedure
which has been made in a single computational environment. The computational schemes that | developed are supported
only by Cad packages which are Autocad for this experiment and Rhino3D for 2"and 3™. This implication entails limitations
in the accuracy of the analysis that we can perform, which are mainly based on vector calculation. However, the aim of our
work implies the utilisation of such performance evaluation tools at a conceptual level, integrated in a common decision
support environment. From this point of view, a low resolution of these tools serves the scope of our research.

The aim of this procedure is to produce a fitness value related to solar gain. For doing so, site conditions have to be simu-
lated. The north is represented by the y-axis of the world coordinate system (fig1) in order to orient our individuals respect
to sun. In this way, taking the vectors that represent the direction of the sun at specified hours and for a specific day, it is
possible to understand how the south facing wall should be oriented for maximizing solar gain. Figl shows the north fac-
ing wall of one of the configurations and the path that the sun describes on the 21 of December from 9:00 to 15:00 for
latitude and longitude of London.

The chosen day is the 21st of December because we want to maximize solar gain during the winter and in the shortest
day. The angle alfa (fig3) that each sun direction makes with the normal vector to each panel can be used for analysing the
exposure of the individuals to sun. By averaging the sum of this angle for each panel for the number of sun directions, we
have a mean value of the degree of the exposure of each face to sun. The sum of such a value for all the faces of the mesh,
returns the degree of exposure of the individual for the whole day. It goes without mentioning that this value is the fitness
parameter.

The same angle can be used for visualising the map of the exposure to sun by simply playing on the RGB value for each
mesh face. In this case | use only red and blue value that gives a gradation of 255 tones. As can be seen in the fig4 when
the alfa is close to 0 degree it means that sun direction and normal to face lie parallel and have opposite versus (maximum
exposure). When they lie orthogonal alfa is 90 degree (no exposure). For values of angles that are bigger than 90 degree
the faces are shadowed.

The detailed explanation of the procedure can be found in 3" experiment in the paragraph “solar gain”.
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Selection

The effectiveness of a genetic algorithm depends on the ability of preserving useful information (genes) while discover-
ing others good qualities by mean of breeding and mutation over generations. The preservation of good traits entails a
method of selection that is able to discern to which extent an information is good or not. If the choice of the best perform-
ing configuration might seams reasonable, it might lead to too fast convergence without neither reaching an optimum set
of configuration nor using the potential of the system. A more balanced criteria of selection between performance and
heterogeneity gives the possibility to make a full exploration of the solution domain reaching better results.

There are several techniques that can be used for implementing the selection procedure that can be divided in:

- roulette selection

this strategy provides a method of selection where the probability for an individual to be chosen is proportional to its
fitness value [2][3]. It gives a high probability to fitter individuals but also leaves a certain possibility to the less fit. The
method is represented in fig1” where the grey rectangles, at the left, represent fitness values of individuals and the long
rectangle at the right is the sum of these ones. A random fraction of this sum is taken, acting as a threshold, and the sum
of the fitness values, until the threshold is reached, is performed again. At the last values added corresponds the configu-
ration to be selected, favouring in this way individuals that have bigger fitness values (the threshold is reached faster by
adding big values) than less fit ones but leaving a certain probability also for them. This is the strategy that i adopt in the
system and it is explained in details in the last part of this chapter “pseudo code”.

- rank selection

rank selection is not based on the actual distribution of fitness but rather on fixed range of values that determine the clas-
sification of the individuals. If the fitness value for a configuration lies in between the limits of a rank it will be assigned
the fixed score for that rank (fig2). This method ensures the tendency towards the better members but does not allow the
discernment of small similarities amongst the individuals in terms of fitness.

- tournament selection

this strategy combines the random selection and performance based evaluation. First there is a tournament of individuals
that are selected randomly, amongst which the best performing is selected (fig3).

- elitism

in contrast to the previous strategy, elitism entails the copying of a certain number of best performing members into the
new generation. In this way good qualities will not be lost through mutation and cross over (breeding). These members
remain unaltered until better performing individuals have been found acting as a sort of source material. The problem of
this method is that it leads to too fast convergence and high risk of local maximum. A local maximum is a condition in which
the genetic algorithm reaches a set of configuration that is better than the previous one but is not the optimum possible.

" figl, fig2, fig3 are taken by the unpublished thesis “Design code” written by Kramer and Kunze [4][2].
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Breeding|Cross over

After being evaluated and selected the members are ready to breed. The breading procedure is done by crossover their
genome. The selection proceeds by selecting and pairing two individuals at time whose genome are split in a random posi-
tion and swapped over. Eventually two new configurations are created [5].

This method of manipulating the good qualities of selected configurations works because it allows to transmit good genetic
heredity to next generations [6] . The splitting of a genome can be done in a random position, in this way each time new
genes are created when recombining them (3™ step fig1) [2] [4]. If the morphology of the configuration requires coherence
they can be split respecting the length of the genes (length of the strings).
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Figl

Mutation

The possibility of having a certain degree of mutation is given by simply flipping one or more bits chosen at random posi-
tions within a genome. Usually it is preferable to have high mutation rate at the outset of the searching for ensuring maxi-
mum exploration of the solution domain [2][5]. The rate can be set to decrease over generation or to respond dynamically
to the trend of the fitness ( see 3“experiment “pseudo code”, set mutation rate)

nolil noloo | 11100 nolaa 11000 11111 noolo 10101

nolil nolol | 11100 nolaa 11000 11111 10010 10101

Fig2
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Evolution

The steps that have been explained in the previous pages repeat in a loop until termination criteria have been satisfied (see
31 experiment, driving the evolution). Termination criteria can be simply constituted by the fact that there is no further
improvement after a certain number of generation has been reached. Usually when monitoring the trend of the fitness,
there is a step increase until a maximum which is followed by a decrease that lasts only for few generations until it stabilises
around a certain value. Other ways for implementing termination criteria is to drive the evolution until the performance of
the individuals is in a certain range from a target value or distribution of values.

The chart in fig1 shows the trend of the mean individuals’ fitness value (generation fitness) for each generation. It has an
upward trend from the initial minimal value to its maximum at generation 50. The reason why this trend does not conform
to the typical trend observed in many other application lies in the size of the chosen solution domain. Its vast dimension
would have required a bigger number of generation for reaching a stable solution instead than 50. This gives me the oppor-
tunity to set the termination criteria in a different way for next experiments. Instead than setting a fix number of generation
after which the algorithm should stop, | will monitored the trend of the fitness setting the termination of the procedure
when there is no more appreciable difference between a given number of generations fitness values.

The chart in fig2 shows the comparison between the fitness values of individuals of generation 1 and the ones of generation
50.It is clearly visible that the values of the 50th generation are constantly higher than the ones of the 1st generation.

The reason why generations rather than single individuals have been evolved lies in the fact that in multi-objective optimi-
zation process there is not one solution to the problem but a set of possible solutions. At certain point in the process the
individuals start to converge towards similar morphologies but even at the very last generation a good degree of variety
is present. With regard to this experiment, the individuals slowly modify the position of the points that describe their ge-
ometry, keeping their topological relations, in order to catch the more daylight is possible (fig3). Considering the fact that
two individuals might perform the same but have different morphology, the designer is able to explore a very large set of
transitions. These are, together with the possibility of exploring very large set of configurations and evolving more than one
fitness parameter at the same time, the main justification for using this method in a design process.

Critical observations

In this first early experiment | decided to cope with only one parameter to be evolved. This application was meant to be
an exercise to engage with the logic of genetic algorithm. In next experiments | will tackle the task of evolving more than
one fitness parameter in parallel process, which is what Genetic Algorithm has been invented for, trying to instrument the
influence of those on the morphologies of the individuals.

Although its incompleteness, this first exercise gave me the opportunity to set the core procedure of the design methodol-
ogy. Next experiments will be focused on different way of encoding the body plan and on the design of the fitness function
which is the part where the designer interacts more.
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Genetic Algorithm | pseudo code 526| 5 Sub make (ByRef genome)
529
530 Dim j
In this paragraph | describe the main sub-routines that build Genetic Algorithm. We will refer to these procedure many 531 genome = "7
. . . . . . . ey - . . 532
times over the description of next experiments which is why | think it is worth to give same details. The general pseudo EE For 3 - 1 To gene_length
code for this technique is shown in fig1 and its detailed explanation can be found in 3™ experiment| “pseudo-code” where =8 If Rnd < 0.5 Then
. . . . 535 genome = genome + 17
we also describe how performance based evaluation tools can be integrated in the procedure. 536 Else
The main steps in a Genetic Algorithm are : a7 genome = genome + TOT
538 End If
539 MNext
. 540 End Sub
- making the genome 541
strings of binary number are randomly generated according to the variable that they have to represent and the size of the 542|[] ub decode (ByRef genome, ByRef values (]|
. . . . . . . . 543
chosen solution domain [2][6]. The ““ in the code (line 528 to 540) stand for strings variable in Vbscript or VBA language. o Dim temp , pos , endpos
545 Dim i, j,stringvalue
Edp
- decoding 547 For i = 1 To words
« . . . . N . . o . . 5458 temp = 0O
this is the translation in Vbscript of the mathematical procedure that we previously explained in this chapter. The way it cas endpos = 1 ¢ word length
works is similar to what we would do by hand, working backwards through the string. The name “words” (line 542 to 568) 550
. . . . . . . . 551 'work hackwards through string
stands for variables and word_length is the size of the string in which the value of the variable is encoded. There are as =53 For 3 - O To word length 1
many words as the variables are. In addition | set a minimum for the values that a variables can assume (line 563). ggi pos = endpos - J
In this way we can reduce the size of the domain if we are not interesting in exploring a certain range of values. For in- 555 stringvalue= Mid{genome,pos, 1]
stance, here the min_value (line 563) is set to 15 which means that the points that describe the sections of our individual ggg 1t stringvalue - 71" Then
(fig2, page 9) can not have a coordinate whose value is smaller than that threshold. This lead not to have too narrow sec- 558 temp = temp + 2 * 3
. . o o . or e . . . . 559 End If
tions which may affect the stability/equilibrium of the “building” as we will see in 3 experiment (gravity). 550 i
561 MNext
. S62 'set a minimum value for the dimension of the domain
- roulette selection 63 If temp <min value Then temp = min value
a fraction of the generation’s fitness (sum of the fitness for all the individuals) is set as a threshold (line 582). The individu- o values (i) = emp
als’ fitness value are summed until this threshold is reached. The individual whose the last fitness value is added to the 566 Next
. . 567
sum, is selected [2][7] (line 584 to 588). | | L s
69
570 Function randomilower , upper |
- crossover 571 random = Int | (upper - lower + 1) * Bnd + lower)
the genome of two individuals amongst the selected ones are taken, split in a random position and afterwards swap over o72| LEnd Funccion
(line 594 to 603) [2][8]. This repeats iteratively until all the individuals have been recombined. 574
575 Function roulette (ByRef swumfitness, ByRef oldpop fitnessi())
576
- mutaﬁon 577 'gelect a =zingle individual vwia weighted roulette wheel selection
. . . . . .. . . . 578 Dim treshold , partsum , J
according to the current mutation rate one of the bits in the genome of an individual is changed from its state. If its values 579 partoum = 0
is 0 it becomes 1 and viceversa [2][9]. ggg -0
582 treshold = End * sumfitness
583
554 Do
Making genome for each individual in population 5585 3 =3 +1
586 partsum = partsum + oldpop fitness(3)
587 Loop Until ((partsum > treshold) Or (j = mwax_pop)|
choose the dimension of the domain to be Preliminary set of weights for fitness values ggg roulecte = 3
explored Praliminary s 550 End Function
ary set of mutation rate
592 P crossover splice chooses a random split point in the genes and swaps them over
593 P ab,cd>ad, ch
Decode geometricfeatures—reconstruction of body plan 594 Jub crossoverdplice [(ByRef wum ,ByRef dad, ByRef newmwum ,ByRef newdad |
595
yes 5596 Dim start
r
o +—— satisfied 598 start = randomil, gene length - 1)
Structuralfeedback no Termination Criteria 5939
Environmentalfeedback &00 newon = Left (wum, sStart) + Mid(dad, stcart + 1)
wiro a ac 601 newdad = Left(dad, start) + Mid(mum, start + 1)
Wind influence
Sun influence H0E
603 End Sub
Spatialanal &
Geometi I ti 605 3ub mutate (EyRef genome)
Circulation analysi 606 Dim pos
Tournamentselection 507 Dim stringralues
s T T T T e Selection s0&
Comparison with yet existing 510 stringvalue=Mid (genome, pos, 1)
Crossover—encoding topology 511
LRI - - 612 If stringwalue = "O" Then
generation 513
614 genome=left (genoms, pos—-1) +"1"+Mid (genomws, pos+1)
gla genome=left (genome, pos—-1) +"0"+Mid (genomes, pos+l)
617
515 End If
. 519
Figl Ga pseudo-code czol | Eng sub




Encoding the bodyplan 2nd experiment| Cellular Automaton

The encoding of the body plan for the 2nd experiment is done by using a very simple version of what in artificial intelligence
is called Cellular Automaton. This computational scheme, borrowed from Christian Derix (CECA), consists of a set of basic
rules applied to a grid of points in order to average their position according to given external inputs (fig4&5) .We can think
at the grid of nodes, shown in fig4, as a network where the points are linked together according to local rules. As soon as
one of these nodes moves away from its initial position, all the nodes in the grid start looking at their local environment in
order to receive information about the position of their neighbourhoods. This can be constituted by 4 (Moore neighbour-
hood) or 8 (Van Neumann neighbourhood) other nodes (fig1). Each of the nodes will then iteratively assign itself its new
coordinate, which is the average of its neighbourhoods’ coordinates, until the configuration imposed by the boundary
condition has been reached. What comes out of this process is a smooth configuration of points that can mimic a surface
whose degree of curvature depends from the given inputs. One of the most interesting and important steps in the process
is ensuring simultaneity when assigning the new coordinates. This is due to the fact that in general in any non linear dy-
namic process things happen at the same time. In so saying the process has to be frozen each iteration for computing the
averaging of nodes’ coordinate at the same time. Simply speaking means that if after averaging the first neighbourhood the
current node assigns itself immediately a new coordinate, it will be updated before the other nodes can receive informa-
tion regarding its current position. This will cause wrong outcomes. The creation of what is often called in the terminology
of the field “limbo word” allow to “fake” the simulation of a parallel process.

Why cellular automata ?

The topology that in this experiment i want to explore can be described as a continuous surface that touches the ground
in certain points supporting itself with “legs” or appendices that come out of it. With the regard to Cellular Automata, it is
worth saying that it offers a very convenient way for generating and describing such as space. The spatial configuration that
comes out of the process in the emergent result of the interaction of the actions of single nodes in their local environment.
In this way the only input that have to be given are the boundary conditions.

Fig3
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The whole genome

As far as the Genetic Algorithm goes, using Cellular Automata for describing the morphology of the individuals offers the
possibility of economizing on the size of the genome. This time, for having variety of shapes, it is enough to assign for each
individual different boundary conditions whose encoding will constitute the whole genome for the individuals.

As already done in the previous experiment the coordinate of the boundary conditions can be encoded in string of 0&1
(fig2). In this case the z coordinate of the three chosen nodes in the network are put to -10 as shown in figé.
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Fitness Criteria

The main criteria, whereby the solution domain is explored, is the equilibrium of the individuals. Let’s consider that the
surface touches the ground in two points having two “legs”. If we assume that the surface is not constrained but only lies
onto the ground, the line that goes between these two points is a rotation axis for the structure. If the weight of the parts
that projects out the rotation axis, in one of the two sides, is the same the equilibrium is assured. If the surface has more
than two “legs” we can extend what said above for each rotation axis (represented by the inner red lines in fig3). Fig4
shows the areas that project out each axis of rotation and the inner area delimited by them. We call the last mentioned
area “support plant” and “Gps” its baricenter (fig3). The first condition of equilibrium is that “G” the baricenter of the
whole area has to fall inside the “support plant”. The best condition for equilibrium is when all the areas have the same size
and are minimized as much as possible.

Normalizing the fitness parameters

In order to encode the fitness criteria we need more than one parameters. The differences between the areas have to be
tested and for this reason, in case the “legs” are 4, there are 6 main possible permutations. In addition, there is another
parameter that needs to be taken into account which is related to the size of the area of the inner region defined by the
rotation axes, “support plant”. For equilibrium reason has to be maximized as much as possible.

When having more than one parameter to evolve we need to assure that the evolution of one does not hinder the evolu-
tion of the other ones especially when they tend to balance out. For doing so, each parameter has to be normalized respect
to the its maximum and minimum value. In this case we divide the difference between each couple of areas over the big-
gest one. Once they are normalized they all come in a range of 0-1 and with the same dimension. It is worth mentioning
that, most of the times, parameters having different dimension have to be combined for making the individual’s fitness, in
this case the normalization is an essential procedure for having a stable and meaningful fitness value ( see 3™ experiment,
“normalising the fitness parameter” and “understanding the weights”) .

Normalized parameters can be also weighted according to the importance that we want to give them. In this case the pa-
rameters related to the difference of the areas are weighted with a factor of 1 while the parameter related to the size of
the area of “support plant” with a factor of 10 (fig1).

fitl = {1 - {areai(l) - areai(l)) / areald)) ~ 2
fitZz = (1 - {areai(l) - areai(2)) / areall)) ~ 2
fit3 = (1 - {areai(l) - areai(3)) / areald)) ~ 2
fitd = (1 - {areai(l) - areai2)) / areall)) ~ 2
fits = (1 - {areai(Z) - areai(3)) / arealz)) ~ 2
fita = {1 - {areai(l) - areai(3)) / areall)) ~ 2
fit7 = area plant support / area plant

wl =1

we = 1

w3 = 1

wd = 1

wdh = 1

wh = 1

wi = 10

tot = wl + w2 + w3 + wd + wd + wo + w7T
population {who) .fitness = {wl * fitl + w2 * fitZ + w3 * fit3 + wd * fitd + w5 * fits + we * fite + w7 * £it7) / tot

Figl

In addition raising at the power of 2 each normalised parameter would make easier for the selection procedure to appreci-
ate small differences between individuals that have close fitness values (fig2).
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Fig5, generation over generation
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Site condition

Fig3 shows the plant of a site located in “Valle di Diano” which is an area close to Salerno, Italy. Starting from the procedure
developed for a squared plant it is possible to extend it to a more general boundary contour as the one shown in fig3. The
main activity this space has been designed for is housing agro industrial fairs. One of the criteria that guides the finding of
this shape is to use all the available area of the site and minimizing the impact on the ground. This traduces in taking the
contour that define the perimeter of the site as boundary condition and at the same time find a condition of equilibirim
with the minimum possible number of “legs”.

Results

The chart in fig1 shows the fitness generation (sum of the fitness for all individuals in generation). It has an upward trend
from the initial minimal value until it reaches its maximum at generation 15. After reaching this peak it levels off.

The chart in fig2 shows the comparison between the fitness values of individuals of generation 1 and the ones of genera-
tion 15 where the fitness is expressed in percentage terms (0 is the minimum, 1 is the maximum). It is clearly visible the
values of generation 15 are constantly higher than the ones of generationl.

The individuals, generation over generation, try to equalise the size of the area that project out the axis of rotation as il-
lustrated in previous page. Along with this criteria, the fitness value is given favouring the configuration that develop the
minimum number of appendices (legs) which in this experiment can vary from 2 to 5. Considering the extension of the
boundary contour, they manage to find a good balance touching the ground in 4 points (fig4).
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Navigate through generations

Fig4 shows some of the individuals generated in the simulation. After the procedure terminates, the designer have to
decide which of the proposed configurations has the right qualities to be considered a possible design brief. In this experi-
ment we have driven the evolution with condition of equilibrium try to minimise the impact to the ground without taking
into account any other criteria. The choice of one or more configuration can be made, therefore, according to other criteria
that have not been encoded in the main procedure. In this case, | chose the one shown in fig5 because it performs very
well in terms of stability (4" best performing amongst the individual of penultimate generation, highlighted with the red
ellipse in fig4) and because of the slenderness of its shape. This step will be much more elaborated in 3" experiment where
we examine the repercussion of working with entire set of configurations at time, and strategies for orienting the choice
amongst the final outcomes are discussed (see 3™ experiment, navigate through generations).

—

Fig3, boundary condition

Figd, generation over generation

Fig5, chosen configuration
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Further development

For further investigating the possibility of building such a structure, | developed a separate algorithm whereby it is possible
to make grooves in the ribs in order for them to interlock each others. For minimising the use of mechanical joint as much
as possible, the pattern of grooves is not uniform but follows a defined hierarchy that is adaptable to any other similar
topology. The ribs touching the ground in at least two points are considered “structural” (fig1), common sense would be
choosing those ribs in the direction where they are shorter. Their cutting pattern will be oriented in order to support the
other ribs meeting them. The grooving pattern for ribs touching the ground in only one point (fig1, cantilever ribs), is ori-
ented for supporting the ribs of the other direction and changes when meeting one of structural rib in order to be sustained
(fig1, red ellipse). By means of a series of boolean operators the algorithm is able to discern what typology of ribs is work-
ing on and orienting in the appropriate versus its correspondent grooving pattern.

N TN

cantilever ribs cantilever ribs

N

structural ribs no structural ribs

Figl, ribs
Making the model

The model was produced using laser cutting technique which suits the task because of the big number of grooves to be
done fig2.

When using the laser, different intensities and velocities have to be set in order to engrave the labels and cut the profiles.
Labelling the ribs in an ordered series of numbers, which respect the above mentioned hierarchy, is crucial in order to rec-
ognise the assembling order.

As long as the laser finishes working, the cut ribs can be carefully extracted from the acrylic sheet and the model is ready
to be assembled fig5. In the next page, are reported some of the images of the model.

Fig2, laser cutting

Fig4, positioning the ribs

Fig5, assembling

Figb, perspective top view

Fig7, elevation
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3rd experiment|encoding the body plan

The aim of the 3™ experiment is to deploy the possibility offered by the proposed methodology for reaching a higher level
of integration in a design process. Supported by the developed set of tools, | try to build the basis for a design method
whereby shapes and patterns are the emergent result of a negotiation between their topology and the environment in
which they are placed.

The environment is simulated with different techniques taking into account gravity, wind, sun. Geometric parameters
referring to the volume and surface of individuals will complete it for their evaluation. The criteria chosen for guiding the
evolution of our individuals are the logic representation of the key features of the environment.

The topology that we are interested to explore, shown in fig 3, can be described as Nurbs surface that encloses a volume.
Once again our design variables are the position of the points whereby the geometry is described. In this way the three- di-
mensional dominium of possible positions of these points is explored in order to obtain a set of solution that are consistent
with the design criteria.

The way for representing this geometry has been done by assigning the position of points through which spline curves
are drawn. The coordinates of these points, that represent the design variables, are encoded in string of 0&1 as already
explained for 1 and 2™ experiment (fig1). In general we can have any number of points for describing the surface, in the
example shown in fig4 we have 8 points per section which are interpolated with Nurbs curves creating 6 sections.

The sections are then lofted and a cap that respects the continuity of the surface is created (fig4).
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This time we also need a base point respect to whom the positions of the points, defining the sections of the body plan,
are given (fig2).
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The making of nurbs curve from random points is based on vector calculation. Vectors are calculated from the position of
the base point around which their positions have been assigned. By using cross product and dot product it is possible to
order them in anticlockwise or clockwise way respecting the geometry of a closed concave region (fig2). In this way the
curves will not self intersect.

For closing the surface in a way that G2 continuity is assured in every point, | developed a procedure that starts by extracting
the top contour of the lateral surface. Getting its domain it is possible to rebuild a series of points at curve parameters from
“t to t/2” and “t-1 to t/2-step” where t it is just a variable describing the curve. Each point lying on one side of the curve (t
to t/2) corresponds another one lying on the other side (t-1 to t/2-step). It is possible then to use these points for extracting
the isocurves of the lateral surface at their location in order to calculate the value of their tangent. After doing this, a series
of curve is drawn whose start point and end point are the points extracted from the aforementioned curve. The last condi-
tion is that the tangent and the curvature (simulated with accumulation of knots points) at the start and the end is equal to
the one of the lateral surface using the values previously extracted from the isocurves (fig3).

The procedure can be found in Appendix A page 66 (line 862 to 1008).

The whole genome

In this 3rd experiment the size of the solution domain is far more bigger than the other two ones. This is due to the number
of points (design variables) that are encoded which may vary from 8 points per section to 14. If the number of sections for
describing the whole shape is 6, it means that we need 6x8x3=144 values to be encoded. Considering that each values has
itself 63 possible way to be expressed (in layman terms it goes from 1 to 63 because | encoded each value in 6 length string
of bits), there are 144x6 factorial combinations. Once again, the number of possible permutations that one should do, for
exploring the solution domain in a step by step iteration, would take an infinite amount of time which is one of the main
reason that justifies the use of Genetic Algorithm [3][3]

Fig1 shows how the points are encoded making the whole genome.

| 111101 001110 002111 110101] 002011] 101011 011013 020011 010100 001101 COOOLY| CORIOZL | e
101121] 001111] 001111| 120001] 001011 11111 | 011011 010011| 112001 0202 o00OLY| 102121 | e
| 100001| 111100] 001111] 010001] 111011] 000O11| 110110| 010011 001001 001101 o011y porill | e
| ooo101| 111111 001111 101010 c01011] c01011| 011011 020011 010101 111111 110021] GOOOZL | e
111001] 100111] 001111| 111000 001010 001111 000011 010011 001001 OO1101] 110011 112011 | e
| 101009 101100 001111] 11101] 111013 001123 011011] 020011| 002003 000111 011109 203020 | e

--------------- | oooo11] 001001] 010101] 101010 | 001011] 001011] 001011| 001011 | 001011 | 001011 | 0O1011] 1101011 |
---------------- | 111000| 001011 011011] 101001 | 000111 001014 001011| 001011 | 001011 | GO1110] 111011] 111011 |
----------------- | 100011 oo0111] 011011] 001011 | 000001| 001011 011111 11100 | 002011 | OO1011 | OO1011| COIIII |
----------------- | 111000| 200100 110011 002011 | 111011 00011 111011 1110017 001011 | c01011| 110111 110130 |
-------------------- | 111114 001011 111101{ 001011 | 111111] 101001] 001011| 000111 | 001011 | 110111 | 001011] OORO1L |
--------------------- | 010111] 111014 001111] 001011 | 001011] 001011| GO1011| CO1011 | 001011 | GO1111 | OO1011| COL1011 |
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Fitness Criteria

The key point that defines the aim of this research is the development of a methodology whereby design concepts, repre-
sented by forms, can emerge from the negotiation of internal traits and their surrounding environment. Within this context the
concept of performance assumes multiple meanings. One of the main reasons why the performative approach to architecture
has become increasingly accepted and constantly pursued, lies in the recent developments in technology and environmental
sensibility. In this framework performance can be broadly defined touching multiple realms from pure technical aspects like
structural, energetic, financial, to spatial and social [1][4]. The aim of the proposed methodology is to consider the perform-
ances of an artefact not individually but rather simultaneously from the very early stage of the design process. Building per-
formances become guiding design principles for an approach to design that sees a radical shift from making forms to finding
forms. Qualitative and quantitative values of the behaviours of the buildings, given by simulation tools, become the basis for
a new approach to design [1][5].

It is worth mentioning that this approach should not be intended simply as a way for deriving a set of possible solution to a
n-dimensional problem. It is the understanding of the hidden relations between different performative aspects, often counter-
acting each others, the key challenge of this body of work and its future development.

Consideration should be given to the design space that one want to explore when applying evolutionary algorithm. The size
of the solution domain has to be sufficiently bigger for having unpredictable results. The unpredictability is ensured due to
impossibility to consider all the potential configurations in advance. For having this, we must go towards the idea of evolving
entire set of possible solutions, the so called “populations”. A population is the visual representation, the phenotypes, of the
information enclosed in the genome. The evolution goes slowly ahead as genes propagates in a population, which happens at
different rates and at different times, until a newly created form emerge from it [7].

As Manuel Delanda points out, it might seem that in this way the role of the design has been relegated to a final choice
amongst the proposed solutions but the truth could not be more distant from this statement. The repercussion of such a shift
from the conventional way of designing, is that the designer becomes the creator of the generative system. The emergence of
forms and patterns is driven by intensive and extensive evaluation of their behaviours under specified design constraints|7]
[2]. Simultaneously inventing and interpreting computational scheme, whereby topological configurations are continuously
modelled under the action of an optimization procedures, goes beyond the role of a spectator to whom at the end of the play
is asked which form he/she would prefer.

Having said that, the other repercussion that such a shift has brought about, is the need for the designer to develop a new sen-
sibility and multiple-skill knowledge in order to able to examine, evaluate and choose, amongst the proposed configurations.
One of the main difficult step to design within the scope of this method, is the development of the “termination criteria”.
These criteria should not only set a threshold beyond which the procedure must terminate but should also inform the proce-
dure with further details for preparing and guiding the choice of one or more individuals. It is worth remembering that, due to
the yet incomplete structure of the proposed method and to the low-resolution fashion of developed performance evaluation
tools, this procedure can only provide a first, rough selection through the almost infinite possible configurations of the solu-
tion domain. Let’s assume for the moment that the completeness of the whole procedure was reached by the development of
computational scheme that could introduce the evaluation of intensive measurements such as structural vector flow (which
can be done by linking the algorithm with FEM based software), or circulation flow ( speculation can be done on the so called
“agent-based system” for their simulation).

Even if this was realized, the designer will still have to front the fact that, at the end of the procedure, he/she must make a
judgement on the proposed forms, patterns whose morphologies will share relevant traits and have differences. The similarity
of traits between the individuals commences after a certain time over the course of the procedure. This is strongly connected
the size of the initial population and the size of the chosen solution domain. The bigger are these two dimensions, the less
similarity the individuals will share and more time is needed for having the convergence towards a specific set of morpholo-
gies. In general the richness of the initial population and solution domain ensures great variety throughout all the process.
Even when convergence is at its maximum and the values of fitness parameters are at their highest level, the individuals,
although sharing similar traits and common topology, have significant differences.

This perfectly matches the expectations of our method, which were to create a system whereby it is possible to make an ex-
haustive exploration amongst all the possible configurations of the solution domain, discarding the ones that do not respond
positively to the pressure of the environment. In so doing at the end of the procedure there will be one, or more, set of possible
configurations that have to be subjected to further analysis and judgment based on the criteria that have not been possible
to encode. The magnitude of the differences between similar morphologies amplifies the more the scale of observations get
closer to the individuals. Before outlining a possible strategy for navigating amongst the configurations, resulting from the
proposed methodology, I will explain in the details the “fitness criteria”.

The environment

With regard to the representation of the environment, it can be structured by encoding computational schemes whereby
simulating different performative aspects. This evaluation will then feed the so called “fitness function” for the assignment
of a value for each individual in population .The computational schemes that | have been able to develop are mainly based
on vector fields for the simulation of sun and wind, the others such as spatial organization rely on geometric evaluations.
Sun analysis and wind analysis with the relative pressure map that is possible to retrieve from it, is the only case where
intensive measurement is performed. In this case the vector evaluation is linked to the empirical laws given by the British
Standard Normative ENV 1991-2-4 whereby the geometric configuration is tested.

The representation of the environment can be described as follows :

- gravity, which is simulated as a condition of equilibrium checking the position of the volumetric centroid
- sun, whose action is instrumented in order to maximize solar gain on the 21st of December

- wind, whose action is instrumented for evolving shapes that minimize its impact on them

- geometric limits, which is an index of feasibility of their structure

- spatial organization, which influences both the external morphology and the internal layout.

Taking into account the organization of space is mainly expressed by three parameters whose optimization tend to max-
imise the allocation of volume at higher position, minimize the footprint, minimise the size of the external surface (Facade
area) and maximise the total area of floors.

It is worth mentioning that when having more than one fitness criteria the development of an efficient and rigorous fitness
function is crucial for the effectiveness of the procedure. In this experiment 7 parameters with different dimension need to
be weighted for making one fitness value for each individual. For not losing the contribution of any parameter especially
when having some of them whose value counteracts others value, they first need to be normalized. After doing this, the
designer can assign a set of weights in order to drive the evolution according to the importance that each of those has in
the design process.

We will see, when describing in details the normalization procedure, that understanding the influence of each fitness
value, when having more than one criteria, is not an easy task. The normalization helps to discern the contribution of each
parameter to the whole fitness but the influence that each of those has on the resultant morphology can only be inferred
by simulating a set of experiments where they can be evaluated singularly. Only after gaining this knowledge it is possible
to manipulate, via the weighting procedure, the contribution to the total fitness of the individuals in order for our system
to respond to different purposes. The other method whereby is possible to tackle with many fitness parameters at time is
to use one of the five state of the art Multi Objective Evolutionary Algorithm ( such as SPEA Il, NSGA I, DMOEA etc.) which
mare mainly based on the concept of Pareto Optimality. However, the implementation of such methods goes beyond the
scope of this research and we leave it to future steps.
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Solar gain

Great advances have been recently done in this field whose results can be summarized in few key elements. Creating
large areas of south-facing glazing walls and heavily insulated north facing ones, allows to maximise solar energy gain and
daylight while minimizing thermal losses. In this way the southern tract can house space that have to be used for a longer
period as office or residential which would also have open view through wide areas of glazing [8].

By keeping heating or cooling energy in floor slabs that have a high thermal capacity, it is possible to release this energy at
a later time for reducing temperature extreme and , in so doing, achieving a balanced indoor climate [8][2].

As already explained in the 1st experiment the chosen day is the 21st of December because we want to maximize solar gain
during the winter and in the shortest day.

Fig3 shows the sun path from 9:00 to 15:00 and the north facing wall of one of the individual where the north direction is
represented by the y axis in the world coordinate system. Fig2 shows the encoding of the vectors representing the direction
of the sun at different time of the day.

In order to keep the algorithm as light as possible | developed a procedure whereby the nurbs surface is replaced by a mesh
from which normal vectors to each of its faces are extracted.

By calculating the angle (fig1 alfa) that each vector, representing a sun direction, makes with the normal vector to each
panel, it is possible to retrieve information regarding the exposure of the individual. Manipulating this information lead to
determine the percentage of solar gain and to draw a map that shows the average exposure of the individual.
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The following paragraph describes the procedure that | developed for building a regular mesh on any sort of Nurbs surface 132: Sub tri_fecets (Byval 1d_surf,ByRef panels_body,ByRetf panels_norm body(),num_u,num_v,ByVel startpoint)
and visualise the degree of exposure to sun for each face. Starting from the surface that describes the geometry of the 1076 Dim daowl, dowV,uMin, uMax, vHMin, wMax
individual there are 5 main steps : 1077 Dim ulnc, vwiIne
1078
. 1079 domT = Bhino.3urfacelomain(id Surf, 0O)
- surface domain 1080 dowV = Rhinu:u.SurfaceDDmain[id:Surf, 1)
the domain of the surface is examined in order to determine position of points in the world coordinate system at specific 1081
parameter (u,v). By changing the value of the parameters we can follow the isocurves that describe the surface and specify 1082 ubin = domll(0]
g . . 1085 ulMax = dowl(1)
a set of rules for building triangulated faces (line 1079 to 1103). e wMin - dowV (0]
1085 vMax = domVil)
- meshing A0 _
after storing in an array the position of all the points that we are interested to have, according to the resolution of the 132; uine = (ullax-ulling mum_u
vIine = (vMax-—vHin) /num v
mesh, a set of rules for the kind of desired mesh has to be formulated. Our intent in not to have separated triangulated 1059 -
faces but one mesh object made of smaller faces. This will considerably increase the speed of the process. In order to do 1050 Dim i, j,mesh_points(),mesh face wvertices()
this, a sequential array of number that describe the order of all the vertices for all the faces of the mesh have to be gener- 1021 Rebim mesh_points (0)
) 1092 Dim counter:counter=0
ated (line 1105 to 1123). 1093
1094 For i = uMin To uMax+uinc/2 3tep ulnc
_ get‘t‘ing the normals 1095 For j = wMin To vMax-vInc/Z 3tep vInc
after the mesh has been drawn, it is possible to analyse the normal vector to each panel and store them in an array which 1332 mesh points counter|- Bhino.EvalusteSurface (id Surf, Array(i, i1
afterwards is used for computing the angle alfa that each of the normal vector make with each of the sun direction (line 1098 ReDim Preserve mesh points (ubound (mesh points) +1)
1128) 1088 counter=counter+l -
1100 Next
1101 Next
Fig2 illustrates the sequence and anticipates the map that is drawn after computing the values of alfa for each panel. 1102
1103 Belim Preserve mesh points(ubound(mesh points)-1)
1104
1105 DIim header
1106 counter=-1
1107 For i=0 To num u
1108 For j=0 To num v-1
1109
1110 header=1i+ (num ) +3
1111 counter=counter+:2
1112 ReDim Preserve mesh face vertices (counter)
1113
1114 If j=num w-1 Then
1115 mezh face vertices (counter-1)=array header, header+l, header+num v, header+num v)
1116 mesh face vertices (counter) =array(header, header-nuw v+1, header+1, header+1)
1117 Else
1118 mesh face vertices (counter-1) =array (header, header+num v+1, header+num v, header+num 7|
1119 mezh face vertices (counter) =array(header, header+1, header+num v+1, header+num v+1)
1120 End If
1121
1122 Next
1123 Next
1124
1125 If igarray(mesh points)=True And isarray(mesh face vertices)=True Then
1126
1127 panels body= rhino. iddMesh (mesh points,mesh face vertices)
1128 panels norm body = Rhino.MeshWertexMNormals (panels body)
1129
1130 Elze
1131
1132 panels body=False
1133
1134 End If
1135
1136| | End Sub

Fig 2 surface mesh map
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- dot solar

an easy way for computing the angle that normal vector makes with one of the examined sun directions, is using “dot prod-
uct”. It is important to normalise these vectors before computing the dot-product in order not to do any further calculation
for retrieving the angle (line 1211).

The closer the angle is to 0 degree or dot product equal to 1, which means that sun and normal have same direction, the
more the panel is exposed to sun. For an angle of 90 degree, or dot product equal to 0, sun direction is orthogonal to the
normal and it can be regarded as it were no exposure. For values that are bigger than 90 degree, it means that the panel
lies on the north facing wall or they are shadowed.

For this reason, the angle itself represents the degree of exposure of each panel. Because there are 7 vectors representing
the sun (from 9:00 to 15:00 step 1 hour) each angle is recorded and afterwards they summed. Finally we divide this value
by the total number of sun directions (7) for having a mean of the exposure over the whole day which is called “panels_
heat” (line 1220 ). It is worth saying that even if we play only with “blue” and “red” which are at the extreme of the RGB
gradation we have 255 possible values to use in order to enhance smooth transition of exposed area and shadows.

- mapping
using these values and RGB colours it is possible to visualise the degree of exposure of each panel to the sun (line 1222 to
1225).

solar gain|fitness

In order to have a numerical value that is index of the efficiency of the analysed shape with regard to solar gain, we use
the information gained in the previous analysis. As already said, the value “panels_heat” represents the exposure for each
panel throughout the whole day and it comes in a range from 0 to 1. The closer this value is to 1, the more exposed to sun
is panel. Therefore, checking if the value of panels_heat is bigger than a specified threshold represents a measurement of
the percentage of the exposure to sun (line 1239 to 1251). By counting for how many faces of the mesh this value is bigger
than a certain threshold, we can assign a consistent fitness to the individual that regards the solar gain. In this experiment
the threshold has been set to the 60 percent of the thermal radiation that would be possible to accumulate in one day if
the a panel lay always perpendicular to the sun .
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Sub dot solar (ByVal panels,EByVal panels norm() ,ByRef panels heat () ,EByVal source vectors suni),ByVal generation)
Dim 1i,]
Dim rgh_walue
Dim red,green,blue
Dim ineident _angle
For i = 0 To UBound (panels norm)

For j = 0 To ubound(source vectors sun)

ineident _angle =rhino.VectorDotProduct (panels normii) , source wvectors_sunij) )

If [(ineident_angle == 0] Then
panels heat(i] = panels heat (i) + ineident angle
End If
Next

'awverade pahel exposure angle
panels heat (i) =panels heat i)/ (ubound | source vectors sun) +1)

red=Z55 ¥ panels heat (i)

green=0

blue=255 - Z55 % panels heat(i]
arrcolorsiil=rgb (red, green.blue)

Next
End Suhb
Sub get_sun solar gain(ByWal panels heat body() ,ByVal panels heat ecap(),EByRef sunfitness)

Dim 1
Dim panel fitness
Dim max

mwax=uwhound (panels heat body) +ubound (panels heat cap) +2

For i=0 To ubound(panels_heat hody)
If panels heat bodyii)>0.6 Then
panel fitness=1
sunfitness=sunfitness+pancl fitness
End If
Next

For i=0 To ubound(panels heat cap)
If panels heat capii)=0.6 Then
panel fitness=1
sunfitness=sunfitness+panel fitness
End If
Next

sunfitness=sunfitness/max

End Sub
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Wind analysis g ” :HZ W | W
The procedure here presented relies on the British standard normative ENV 1991-2-4 for wind analysis which takes into ac- = a7

count, amongst other parameters, the direction of the wind and the orientation of an exposed surface. Although the results N}/ | g s| NE | OA | OB
that come from this procedure are approximated, compared to the ones that would come from a CFD simulation, they are _4"‘

sufficient for the scope of this research. The main limit is that turbulence phenomena that occurs when the height of the y \yj
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building is more than 200 meters are not taken into account
The reason why this algorithm has been developed is mainly due to computation resource limits. If one wants to analyse Section7  Reference wind i’ "4/ o -
each individual, with a software that performs CFD analysis, it will slow down the whole process of an unreasonable amount M}' § T 0 )
of time . It might even be impossible for a normal laptop or desk pc to perform such a great number of analysis. It is worth 7.1 Reference wind pressure ’ \J%’-\

mentioning that the size of each population for having good variety of shapes should be between 20 and 50 (the more the S ?h-:\\NU oa | OR
better) and the number of generations , for having convergence, should be bigger than 5. This means that at least there are - 2.1) =/ 1
100 individuals to be analysed. where:"" 2 ’ X ﬂy N oV | ow
Fig1 shows the meaning of ref(?rence pressure.and the wind m.ap fpr the United .ngdom.. Thg referencg pressure is in lay- Vi reference wind velocity as defined in 7.2 5 e
man terms pressure that the wind would exercise on a surface if this lay perpendicular to it (without taking care turbulence o witdensiy § sc ﬁz“ o g2 B
and other dissipative effects). The meaning of it that the kinetic energy owned by the wind is transformed in pressure when o / =

finding a surfac.e that obstécles its flow. In the formula shown in fig1 p stands for the density of the air at 25 Celsius degree t:,“g::xgzrgg iif‘glﬁeeggﬁogydﬁ'g‘:d:is:dst‘;?;‘?ﬁn;"s’sh:t;‘:’:ﬁ:;a;‘é:c;g Tt
and V for velocity of the wind. A, the value of p shall be 1,25 kg/m?.

The prevailing direction of the wind, taken from the normative, is 240 270 degree, while the velocity is around 20m/s (fi2).
There are many other coefficients that should be taken into account for calculating a more reliable velocity of the wind for
a specific site. The coefficient are given by the roughness of the area, as well as by other factors that regard the surround-
ings. | decided to take a conservative value of 30 m/s leaving at later time the analysis of these , when a precise site will be
specified.

Fig3 and fig4 show the behaviour for a duo-pitch roof building which is exposed to wind. As we will describe over the course
of this paragraph, it implies the knowledge of the normal vector for each of the face of the building as well as the upwind
and downwind edge of it.

(1)P The reference mean wind velocity pressure, G,y shall be determined from:
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Using the normative

The mesh generated in “sun analysis” is used again here for simulating the impact against the wind. The solid angle that the
wind, represented by a vector, makes with the normal to each panel can be divided in two angles teta and alfa (fig2 & fig 3).
Teta is the angle that the wind makes with the normal in the xy plane and alfa (or to be more precise 90-alfa) is the angle
between the two vectors in one of the orthogonal plane to the xy plane of the world coordinate system. If we assume the
wind blows horizontally, the last mentioned angle represents also the inclination of the face respect to the ground. If it is
90 it means that the wall is vertical, if it is O the wall lays horizontally. Basically teta and alfa are the component of the solid
angle that the wind makes with the normal to the face.

With the same technique used in sun analysis for calculating these two values (normalization and dot-product), it is possible
to take from tables, given by the normative, the value of the corresponding pressure coefficient. This is multiplied for the
reference pressure obtaining the pressure on the panel.

In addition to these two values the upwind and downwind edge have to be determined. This is crucial for having the right
value of pressure coefficient which can vary dramatically between two equally oriented panels that are in two different
zones of the building. The procedure for obtaining the size of the different zones of the building is given by the ENV 1991-
2-4 as shown in fig1 & fig2.

According to the typology of the building, its edges are divided in one or more zones which are determined by taking into
account the distance of them from the upwind edge (fig1). There is a different set of coefficient for each of these zones.

In addition, the size and the number of the zones in which the building is divided vary also depending on the direction of the
wind. If the wind invests the building perpendicularly its main dimension, it is likely that the laterals side will be divided in
not more than 2 zones (fig1 case d<e). This is mainly due to the fact that the wind causes wide area of negative pressure on
the faces whose correspondent teta has values from 75 to 130 degree. In general the wind creates positive pressure on the
face where impacts and negative pressure on the connected lateral faces (fig 1 zone A). If the length of the lateral surface
is sufficiently extended the pressure will gradually become positive along it (fig1 zone B and C) and experiences another
abrupt change in zone E which is the back side of the building.

The same can be said for a roof fig3. A roof that is completely flat (alfa=0) will be exposed to negative pressure for almost all
its area while instead a roof whose alfa value is 90 can be considered as a wall. If alfa is in between these two extremes, the
roof (fig3 mono-pitch roof) experiences a first zone H where the pressure is mainly negative and a zone | where the pressure
gradually becomes positive again.
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The determination of these values for a geometry such as the one of our individual is far more complex but, generally speak-
ing, those are the main principles. In order to overcome the problem of dividing the building into zones according to its Wing (o Wi W4
orientation to wind and retrieving the correspondent pressure coefficient, | developed a procedure that holds for any sort |
of surface and mainly consist in :

- using the normative

We need to transfer the table given by the normative (fig3) in three double array (7,12) shown in fig1 each made of 7*12
elements (fig1). These are nested arrays and are composed of a first one, where is encoded the value for the angle alfa (0 to B c D
90 degree), and a second nested one that has two values. The second value of this array is the angle teta (0 to 180 degree)
and the first one is the correspondent pressure coefficient that a face would have according to the aforementioned angles. |
There are three different arrays (called cpe) one for each zone of the building A,B,C. We do not take into account zone D '
(fig2) which occurs only in the case of extremely long buildings.

Zg

a) Duophich roof

Fig 2

- determining upwind and downwind edge

after computing the bounding box for each individual(fig4 previous page, bounding box represented by the 8 dot points) Table D.13 External pressure coefficients for pitched roof zones A to J
. . . . . . .. ) . .. Pitch angle | Loeal wind | Zome
it possible to determine on which side of it the wind impacts and follow the rules given by the normative to subdivide the a direction [ 5 5 o = = m I 3
building into different zones. In fig4, previous page, the dot a and the dashed red line represent the threshold between the il _ _
. . . . . 3 =061 =) 58 =056 | —041 —(.76 —1.78 —0.62 —0.79 —0.94
upwind and downwind edge as already seen for figl & fig2 (previous page). 45 T3 Z053 | =050 | 040 | 055 | —08h | =081 =002 | —058 | —058
o’ —1.11 ~1.29 - 1.36 —(.96 -~0.97 .91 =105 =097 =117
- meshing o -135 |[-080 |-062 | 042 |[-0.77 |[T020 |—-148 | —105 | —097
0 —076 | -068 |-060 |-050 |-076 [—-063 |-076 |—085 |-090
with regard to the mesh, we use the same one created for “sun analysis” and the same array of normal vectors of its faces. —30° a0 113 | =102 | —088 | —079 | -083 | —07% =117 | —0&7 | —073 |
Once the values of teta and alfa have been calculated and the upwind edge of the building has been determined, it possible fgg ‘?g ‘gﬁ ‘%-%E ‘éﬁ? :}Eg +g~g - iﬁi —Hg —}é%
. . . - . - =L - L = .l =1 =1,
to take the corresponding pressure coefficient. i 108 [—106 —097 | —0m2 053 0 oL oo o0&
=15" T 30° ~2.64 -2.37 -1.71 1.00 083 0.85 =2.75 - 1.66 —1.11
= 60" —2.25 —2.15 —1.B5 —1.02 —.76 —0.72 —2.44 —1.60 =107
40° —1599 —(.79 —0.58 —0.31 — (60 —0.20 —1.561 —1.15 —-1.10
cpe al(0,0)=array (90, array(1,0)) cpe_e(0,0) =array (90, array(0.83,0)) cpe b0, 0)=array (30, array(1,0]) 0° —1.49 —-1.13 —1.19 —1.12 —053 —0.82 —1.47 —8] —0.67
epe_ a0, 1) =array (oo, array(l.07, 15)] epe o0, 1) =array (90, array (0. 68, 15)) cpe_bi0, 1] =array (S0, array(1.07,15]) ~5" *30° -236 | =221 |-163 [-1.04 0.82 0.77 224 | -130 | =081
cpe &(0,2)=array(90,arravy(1.10,30)) cpe ci0,Z)=array(90,array(0.49,30)) cpe b0, 2) —array (30, array(1.10,30]) T 650° -1.85 —1.57 —1.28 —L77 —0.65 —().54 —2.10 =167 = 1.08
cpe:a(D,S:I=array(90,array(1.12,45):| cpe_c(0,3)=array (90, array(0.34,45) ) cpe_b (0, 3] =array (30, array(1.12,45] ] EFIS =130 (.78 (.55 027 0.58 —0.20 - 1.65 —1.15 -1.10
cpe_a(0,4)=array (90, array(0.54, 60 cpe ei0,4) =array (90, array(0.26,60)) cpe b0, 4] =array (90, array(0.54, 60) ) 0" —147 T-125 [-115 [-116 [-069 | -071 —143 | —075 | —052
epe_a(0,5)=array (90, array(-1.10,75) cpe e(0,5) =array (90, array(0.23,75)) cpe_ k(0,5 =array (S0, array(-0.73,75] ) 0 H0° —200 | -170 [-138 |-108 |-066 |-067 |-170 | —124 | -LID
epe_ail, ) =arrayid0, array(-1.30,90] cpe_o (0, 6) =array (90, array (0.20,90)) cpe_b (0, 6] =array (30, array(-0.80,30] ) T 60° —170 [-124 [-110 [-064 [-061 [—042 [-200 [-170 |-138
ope &(0,7)=array (90, array(-0.8, 105) cpe_ci0,7) =array (90, acrray(-0,26,105) ) ep=_ k(0,7 =array (30, array(-0.73,105] ) | BTy =143 [ =076 |-05Z |-024 -0.62 0,20 147 1.25 -1.15
cpe:a(D,Elj=array(90,array(—0.63,120 cpe ci0,8)=array (90, array(-0.29,120)) cpe k0, 8)=array (90, array(-0.63,120)) i TR T —104 —11 T —056 -y 10 “nan —0.43
cpe_a(0,9) =array (90, array (-0.50, 135 cpe_c(0,9) =array (90, array (-0.33,135] ) cpe_b (0,8 =array (30, array(-0.50,135]) + 5 BTN ~1.78 164 134 | —1.09 | -062 | —080 | —Lis | —102 | —0.76
epe_a(0,10) =array (90, array(-0.34, 15 epe_c (0, 10) =array (90, array (-0.32,150))  ©Pe B0, 10)=arcay (90, array(-0.34, 1500 Ta0 1.67 133 [-112 [-071 [-06d |[-042 [-206 [—151 |-105
cpe al0,11) =array(90,array(-0.30, 16 cpe_o (0, 11) =array (90, array(-0.28, 165) ] cpe b0, 11)=array (90, array(-0.30,165)] TR —121 —0.83 —0.55 .25 —0.61 .20 —148 —1.16 —1.10
epe =(0,12) =array (90, array(-0.34, 18 cpe_o (0, 12) =array (90, array(-0.24, 180) ] cpe_bi0,12) =array (90, array(-0.24,1380) ] 0 —00] TYR] 078 081 —0.21 —0.31 —0.00 —0.36 —0.30
020 .20 020 .20 .20 £0.20 +0.20 10,20 T0.20
cpe_=a(1,0)=array (75, array(0.58,0)) cpe_ci1,0]=array (75, array(0.81,0]) epe bi1,D)=array (73, array(0.81,0)] +15 30 084 088 [-082 |[-083 |[-021I |-037 |-063 |-035 |-032
cpe_all, li=array (75, array(0.71,15) ] cpe_ci(l,1l)=array (75, array(0.82,15)) cpe_hbil,1)=array (75, array(U.82,13]] 1020 ) 20 .20 +{) 21) ), 20 =020 H).20 i) 20 20,20
epe_ail,2)=array(75,array(0.55,30] ) cpe_cil,Z)=array (75, array(0.83,30)) cpe_bil,Z)=array (75, array(0.83,30)) ETTR —1927 —0.86F —0.70 —061 —0.54 —033 —157 —1.21 003
cpe &l 3i=array (75, array (0.82,45) ] cpe cil,3)=array (75, array(0.68,45)) cpe ki1, 3)=array (75, array(0.69,45)) +0.20 .20 )20 .20 H0.20 020 020 0,20 020
cpe_all,4)=array (75, array(0.75, 601 cpe c(l,4)=array (75, array(0.55,60)) cpe_hil,4)=array (75, array(0.55,60) ) ETTiN —190 T —058 - 0.5 .20 T 115 T
cpe_ail,5)=array (75, array(-1.10,75) cpe_cil,5) =array (75, arcay (0.37,75)) cpe_bil,5)=array (75, arrayv(-0.73,75]] T —0.08 —0.50 —050 —0.50 020 025 —0.60 — 0030 —0.25
cpe_ail, 6l =array (75, array(-1.21,90] cpe_c(l,6)=array (75, array(0.20,50]) cpe_kil,6)=array (75, array(-0.80,90)] +0.50 050 5D 5D 039 £0.40 20 +0.20 020
cpe_all,7i=array (75, array(-0.8, 105] cpe_c(l,7) =array (75, array(-0.26,105]] cpe_bil,7)=array (75, array(-0.73,105)] 30 i 0.50 050 | —050 050 0.20 020 D40 —0.30 ~0.25
cpe_al(l,8)=array(75,array(-0.63, 120 cpe_c (1,8 =array (75, array(-0.29,120)) cpe b(1l,8)=array (Y5, array(-0.63,120]) 75 55 | 4040 +0.45 041 0.2 055 050 047
cpe ail,9)=array (75, array(-0.50, 135 cpe_c (1,9 =array (75, array(-0.33,135)) cpe_bil,9)=array (75, array(-0.50,135]) i[it]‘ 014 —050 045 040 +U.2'U il]‘.ﬂ]‘ 081 080 —0.83
cpe all, 10 =array(75, array(-0.34, 15 cpe_e(1,10) =array (75, array(-0.32,150]) cpe_h(l,10)=array(¥5, array(-0.34,150]] 050 +0.43 030 H025 020 +0.20 L0040 +0.40 +0033
cpe_a(l,11)=array(75,array(-0.30, 16 cpe_c(l,11)=array (75, array(-0.28,165) ) cpe_hbil,11)=array (75, array(-0.30,165]] ESTiR L3 —0.04 077 0,20 —0.60 iﬂ.?ﬂ ~15h 115 T
cpe_ail,12)=array(?&,array(-0.34, 18 cpe_c (1,12 ) =array (75, array(-0.24,180)] cpe_bil,12)=array (75, array(-0.24,180]] 5 ik +-[]I...’1:L'Ilm 050 060 2040 070 042 1040 i
cpe_aiZ,0)=array(60,array(0.50,0]] cpe_ci2,0) =array (60, array (0.80,0) ) epe_b(2Z,0] =array (60, array(0.57,0] ] b ;ég IE$ IE:;; 15@ :E;ﬁ I;"ﬁ L Y Y R T
epe_miZ,1)=array (60, array(0.63,15] ] cpe_c(2, 1) =array (60, array(0.70, 15) ) cpe biZ,1)=array (60, arrayi0.63,15) ) = 117 —Ulfﬁ _n:'% --[]133 OF =028 :1125 —1"15 —NT
Cpe_&(2,Z)=array (60, array(0.77,30)) cpe_c (2,2 =array (60, array(0.62,30] ] cpe_ k(2,2 =array (60, array(0.79,30]) - - — = = - = =
cpe =i2,3)=array(60,array(0.68,45) ) cpe_ciZ,3)=array (60, array(0.50,45) ] cpe b2, 3 =array (60, array (0. 658, 45 ) '} +057 | +0567 | +0.57 +D8@ +0.57 +031_} +0.50 | +0.50 | +0.50
ope_a(2,4)=array |60, array(0.59,60) ) cpe_c(2,4| =array (60, array (0.35, 60) cpe_b(2,4)=array (60, array(0.47, 60] | 60 = +030 1 0.0 1 4958 1 #00: | +00B | +OMe L aOST 14D lC | 0T
cpe_a(Z,Sj=array(6l3,array(—1.1E|,'?5) cpe_c (2,5 =array (60,array (0.27,75]) cpe:h(2,5)=array(SD,array(—D.'?S,?S] 1 IED: +0.70 +0.47 +0.37 :(JSE- +0.37 +0.35 +(.50 +0.59 +0.59
ope a2, 6)-array (60, array(-1.21,90) cpe_c (2, 6] =array(60,array(0.20,90)) cpe biZ,6)=array(60,array(-0.80,20) ) 4130 —044 —0.44 —0.44 =0.20 ~0.44 1020 —-1.21 —121 —-1.21
cpe =(2,7) =array|60,array(-0.8, 105 ope_ci2,7) =array (&0, array(-0.26,105] | cpe bi2,7)=array|60,array(-0.73,105] | . 0 +081 | 081 | <081 | +081 | 081 | 4081 | +0.58 | +0.58 | 4058
cpe a2, 8)—array |60, array(-0.63, 120 ope_o(2,8) =array |60, array(-0.29,120) ] cpe B(2,8) =array (60, array(-0. 63,1200 +T5 =30 +083 | +083 | +083 | +073 | +083% | 4073 | +085 | +085 | +0.85
cpe aiZ,9)=array (60, array(-0.50, 135 epe_o(2,9) =array (60, array(-0.33,135)) cpe b i2,9) =array |60, array(-0.50,135) | *ED. +.55 +0.55 +.55 :U.dl +0.56 +.41 +.78 +0.78 +0.78
cpe_a(2,10) —array (60, array(-0.34, 15 ope_ci2,10) =array (60, array(-0.32,150)]1  cpe b(2,10) —array (60, array(-0.34,150)) S L;EI'U - ;gt‘ ‘U-l‘w ”;U-’TJ h 020 |[-043 [ 020 [-121 [-121 [-12
cpe aiZ,11)=array(60,array(-0.30, 16 cpe_ (2, ll)=array(60,array(-0.28, 165] ) cpe biZ,11)=array(60,array|-0.30,165) ) NOTE 1. Interpolatlon may be u TWEEn Valiles of the Same sign. . |
cge_azz,12;=arra§$60,arra§§—o.34,18 cpe_oi2,12) -array (60, array(-0.24, 180) cpe:h(2,12]=array(60,array{—0.2‘l,180)J z;ﬂ;‘l;:ﬁm-um change rapidly from negative 1o positive with inereasing pitch between a = 15" and a = 307 and values for both signs
NOTE 3, When interpolating between o« = 15 and o = 30°, interpolate between negative values (0 give load case for upward load aml
......................................................................................................................................... interpolate hetweer posilive values 1o give load casa for downward 1oad.
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- dot wind

once the upwind and downwind edge have been defined it is possible to examine each face of the mesh and determine the
angles alfa and teta (line 1671 to 1683).

The way by which the pressure coefficient is assigned for each of the face of the mesh is described from line 1687 to 1707.
First the position of the face is checked for determining in which zone of the building it lies. This is done simply by checking
if its vertices fall beyond or behind the plane (or the planes) that divide the building into zones according to the normative
(fig1). In this way we know in which “cpe double array” (a,b,c figl previous page) the pressure coefficient should be. Alfa
and teta and relative cpe double array (a,b,c line1695 t0 1702) of the face are given to a sub routine called “get_cpe” in
which two sorting mechanisms are performed. The first one will check which is the closest value to the current alfa value in
the correspondent cpe double array. In this way it knows which of the seven nested arrays has to be scanned for getting the
pressure coefficient. Performing again the same sorting mechanism, looking this time at teta value, will eventually allow to
find the searched value (line 1724 to 1748).

This value is afterwards multiplied for the reference pressure in order to compute the pressure on the face.

Using the values of pressure for each face, it is possible to play with the RGB gradation and obtain the map of pressure on
the entire building (line 1711 to 1720).
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Sub dot_wind (BEyWal panels, ByVal panels _norm(], ByRef panels_pressure (], ByVal source_wectors_wind() _
_.ByVal ecpe_a,ByVal cpe_ b, ByVal cpe_c(),ByVal a,ByVal b, ByVal index,ByVal generation)

Dim i,]3,rgh_wvalue
Dim red, green,blue, incident_angle _beta, incident_angle teta
Dim cpe_walue,alfa,beta, teta, panels norm teta () ,vertices

vertices=rhino.MeshVertices (panels)

For i = 0 To UBound (panels norm)

Mext
End Sub

Zub get_cpe (ByWal panels norm() ,ByWal cpe() ,ByVWal alfsa,ByWal teta, ByRef cpe value)

panels norm teta(0)=panels norm(i] (0]
panels_norm tetal(l)=panels_norm(i] (1)

panels norm teta()=0

For 3 = 0 To ubound (source vectors wind)

inzident angle teta =rhino.VectorbotProduct (panels norm teta,source vectors wind(j)

alfa=rhinD.ACDs(panels_nnrm(i](2])*180/rhin0.Pi
teta=rhino.ACos incident _angle teta) *180/rhino.Pi

If isemptyb)=False Then

If wertices (i) (index) >=aiindex) Then

Elze

End

Elze

get_cpe

get_cpe
If

panels norm(i),cpe_a,alfs, teta, cpe_value

panels normi(i),cpe_b,alfs, teta, cpe_value

If wertices (i) (index) >=aiindex) Then

End

If (wertices (i) (index) <a(index)] And wvertices (i) (index)>biindex) ) Then

End

get_cpe
If

get_cpe
If

panels norm(i),cpe_a,alfs, teta, cpe_value

panels normi(i) ,cpe_b,alfa, teta,cpe_value

If wertices (i) (index) <=hiindex) Then

End

End If

panels pressure(i] =panels pressure (i) +cpe_value dynamic pressure

Mext

panels pressure noriw= (panels pressure (i) +2.75%dynamic_pressure)/ (1.12*dynamic_pressure+Z.75%dynamic_pressure]

get_cpe
If

panels norm(i),cpe_c,alfa, teta, cpe_value

If panels pressure (i) <-0.73%dynamic_pressure Then
arrcolors (i) =rgh(0,0,0)]

Elze

red=2Z55 ¥ panels pressure_norm
green=Z55-255 ¥ panels pressure_norm
blue=255 * pahels_pressure horm
arrcolors (i) =rghired, green,blue)

End If

Dim i,3,dif(),index alfa,index_tets
Relim dif alfa(?),dif teta(lZ)

If panels norm(Z) >0 Then

End

For

Mext

For i=0 To 7

dif alfa(i)=arrayisbhsialfa-cpe(i,0) (0)),1i]

Mext

Sort number dif alfa

index slfa=dif alfs(0] (1)

Else
index_=slfa=0
If

j=0 To 12

dif teta(j)=arrayishsiteta-cpe (index alfa,j) (1) (1)) ,.]3]

Sort_ number dif teta

index teta=dif ceta(0] (1)

cpe_wvalue=cpeiindex alfa, index_tets) (1) (0]

End Suhb
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- get fitness

in order to have a fitness value for each individual that describe the behaviour of this respect to wind, the pressure that acts 1848 Sub get wind fitness (ByVal panels body, ByVal panels cap,ByVal panels pressure body(l,
on each of its face is compared with the value of the reference pressure. The faces whose absolute pressure value is bigger 1843 _ByVal panels_pressure_cap(),ByRef individual wind fitness,ByWal generation)
. . . .. . 1550
than a certain percentage of the reference pressure are counted. This number is divided over the total number of faces in 1551 Dim 1,9.%,1
the mesh for having a normalised value. The reason why is the absolute value to be taken into account is because the wind 1852 Dim max
. . . 1. 1553
creates Iarge area Of I:]egatlve pre?ssgr? When Investlng a bUIIdlng' . i L i i 1554 max=ubound (panels_ pressure body) +ubound (panels pressure cap)
Determining the efficiency of an individual respect to wind, not only implies the examining of the area where the wind im- 1855
. B B . B 3 1556 For i=0 To ubound(panels pressure body)
pacts but also lateral and back side where the pressure |n. maflnly negative. Thf:.so determlnediﬁjcne§s represgnts, therefore B If (ebs (panels pressure body(l))>D.§+dynemic pressure) Then
, the percentage of faces whose absolute pressure value is bigger than a specified threshold giving information that regard 1858 individual wind fitness=individual wind fitness+1
the efficiency of the individual as a whole (line 1848 to 1870). To be more precise the “wind_fitness” of the individual is the 12‘23 NextEnd 1z
result of the difference between 1 (which is the maximum) and the above mentioned value because our aim is to minimise 1661
the effect of the wind on the individual. L For 170 To ubound(panels_pressure_cap) _
. ; . I . . . . . 1563 If [abs(panels_pressure_body(1i) ) >0.6%dyhamic pressure] Then
Fig1 (current page) & fig2 (next page) show behaviours for buildings having different morphologies. The back side is the 1564 individual wind fitmess-individual wind fitness+1
part where pressure in mainly negative with higher value of depression where the colour becomes black. On the upwind 12:2 . End If
. . . . . . ege ExXt
side, where the wind impacts, the colour is magenta representing a value close to the dynamic pressure (positive pressure). AEET
Where the colour is green|gray we are in transition zone from positive to negative . Negative pressure might occurs also at 1568 individual wind ficness=individual wind ficness/mex
. . . . . 1569
the upwind edge depending on the orientation of the face respect to wind. e | 4 S
It is rewarding to see how close is this map with the one obtained from a CFD simulation in Ansys as shown in fig2 & fig3
next page.
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Normalizing the fitness parameters|fitness function

Considering that a genetic algorithm makes a parallel search into the solution domain working with an entire set of solu-
tions at time, we need to avoid the risk of comparing values that are not mathematically comparable. The definition of a
fitness function for leading the Genetic Algorithm in a specific direction is crucial. This function performs the evaluation of
the individuals giving them a score which is afterwards translated into a probability to be selected. There are two main ways
for doing this translation. The first one is called “relative fitness scaling” where the analysis values of the individuals are
replaced by values relative to the distribution of fitness within the population. In this way the relative fitness values indicate
how individuals perform respect to the population average. Each relative fitness is, after being weighted, recombined with
the others for making the total individual’s fitness. This procedure has the advantage that the over-importance of a param-
eter respect to others is avoided. However, due to the fact that the weights of the parameters are constantly varying, the
searching of the algorithm might experience dramatic fluctuation.

The second procedure instead, which is the one that | adopt, provide the fitness function with a set of reference values. The
fitness parameters of the individuals can be expressed as multiples, fraction or percentage of these.

Normalizing each fitness parameter respect to these reference values allows to evaluate in the correct way their contribu-
tion to the individual’s fitness. In order to normalize them, we first need to understand what are the boundaries of the
chosen solution domain. If the coordinate of each point is encoded in a string of 0&1 of length 6, it means that its value
can vary from 1 to 63 (as already explained in 1%t experiment). If the position of the points are given from a base point and
they all happen to have the maximum value of 63, they will describe the section shown in fig4. In addition, considering that
the distance between two sections it is controlled by genes, it can vary from 1 to 63 as well. If all the sections are spaced of
the maximum value, we can calculate the maximum volume and maximum surface area possible for the size of the chosen
solution domain (fig4).

This time for avoiding to have over pronounced kinks when lofting two sections that are very close to each other, the mini-
mum distance between consecutive sections is set to 15. Similarly, the minimum value for the coordinates of points is set
to 20 to avoid the individual to be too “skinny” in just one or two sections (fig3).

With the same consideration given for the maximum volume, it is possible to retrieve, from the chosen solution domain, all
the information that we need for normalizing the fitness parameters:

- min and max area footprint

- min and max lateral surface area ( Facade area)
- min and max volume

- min and max height of the volumetric centroid
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The knowledge of these values allows for normalizing fitness parameters such as the ratio between Volume and Facade
area as shown in fig1. Similarly this procedure can be applied to all the other fitness parameters and, in so doing, have
them allin a range of 0&1 which is very useful for evaluating their contribution in percentage terms. It goes without saying
that this procedure is vital when comparing parameters that have different dimensions and whose values would be not
mathematically comparable.

After being normalized, fitness parameters are also raised at the power x which varies according to how sensible we want
the value to be (fig2). Raising at the power of 2 the normalized parameters will give the opportunity of making the fitness
values sensible to small improvements when having high values of normalized fitness (fig2).

Although this procedure is very efficient for linking fitness parameters to solution domain, its major drawback is that the
importance of certain parameters could be overemphasized respect to others in dependence of the magnitude of the
reference value to which they are scaled (see page 39 “minimising | maximising”).
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Volume over Footprint

The ratio between the volume of the individuals and their footprint is a fitness parameter whose optimization leads their

morphology to assume traits that are similar to the ones shown by the truncated cone in fig1. Because of the influence of
the other parameters they will never get to that shape though. The reason why | introduced this ratio is because its evalu-
ation leads to have smaller footprint areas and the allocation of more volume at higher position (Manhattan function).
Similarly to what we have seen for the ratio Volume over Facade area, the normalization of this parameter is done by divid-
ing the difference between the value of the individual and the minimum one (according to the size of the chosen solution
domain) over the difference between the maximum and the minimum value (fig1 previous page). In this way it comes in a
range of 0&1 which is vital for evaluating its contribution to the whole fitness.
kAax Wolume over Footprint rin Yolume over Footprint

Figl
Volume over Facade area

The ratio between the volume of the individuals and their lateral area, which can be regarded as the facade area, is a fitness
parameter whose optimization, would lead their morphology to become as a sphere. Because of the influence of the other
parameters and the way the points are assigned they will never get to a sphere though. The reason why | introduced this
ratio is because it is an index of the efficiency of the individuals’ morphologies. Considering that for a given volume there
are many different shapes that can enclose it, Volume over Facade area gives an evaluation of the amount of resources
(facade area) that an individual requires for doing it. Max value of the ratio between volume and
lateral area surface

Fig2
Facade to Floors ratio

Facade to Floors ratio is the ratio between the total floors area, which is the sum of the area of each floor, and the rela-
tive facade area. It is essentially an index of economy efficiency being facades the most expensive part to build. It gives,
therefore, a quick evaluation of the efficiency of the individuals’ morphology. The meaning of this parameter can be also ex-
plained saying that it represents how much facade area is needed for enclosing a square meter of usable floor space [9].
This ratio mainly depends on the distance between two consecutive floors and on the shape of the building that define the
facade area. Varying this distance influences to a great extent this ratio whose changes help to understand how a particular
morphology performs from this point of view.

In this experiment | encoded the distance between two consecutive floors in the genes in order to have a set of values that
starts from 3 meters and ends at 5 meters with interval of 0.25 meters. For taking into account the presence of cores, the
total floors area has been reduced by 20 per cent of its original value.

Fig3 shows how the ratio Facade to Floors (FA_R) varies for different morphologies having the distance between two con-
secutive floors fixed at 5 meter sand a number of floors of 55.

F&s_R=0.12 F&_R=0.17 F&_R=0.19

e
e
S ——
e —
e —
e
e
e
e
T e——
e
e —
e
e ——
."-__
"-'—_
——
e
e Sm—
e——
e
=
e —
-"'_-'

e e—

e —
——
e—
—

e ——
i
—
—
T —
T —
——
S —
e —
—
—

Fig3

35



Gravity

For simulating gravity as a condition of equilibrium the volumetric centroid of each individual is calculated. Once the po-
sition in space of the centroid is known, it is possible to check if the projection of this point falls within the first contour,
which is the one the lays on the ground (fig1). If the projection of the centroid is not outside this contour, it means that
the individual does not tend to lean over. Although this is a not a sophisticated procedure for equilibrium condition, it is
very efficient because it decreases considerably the size of the solution domain, quickly discarding all the members whose
morphology does not satisfy this criteria.

Height of volumetric centroid

The height of the volumetric centroid is a parameter that evaluates how the volume is allocated along the height of the in-
dividual. As already explained for the others fitness parameters there is a minimum and a maximum height for the centroid
according to the chosen size for the solution domain. It is obvious to say that the more the centroid is high, the more the
volume is allocated at higher position. It is a very simple and effective way for ensuring that individuals will tend to increase
their height and the allocation of volume at the upper side. Fig2 shows the morphology that present minimum and maxi-
mum value for this parameter.

Minimum radius of curvature

Evaluating the minimum radius of curvature of the surface of the individuals allows checking whether there are over pro-
nounced local discontinuities on it. The main reason why | introduced a parameter related to this value lies in the fact that
too small radius of curvature cause difficulties when meshing the surface. The other reason is that in terms of feasibility, it
would be surely impossible to build a truss like structure that follows the curvature of the surface if there are kinks or very
small radii of curvature.

Because there is no limit to such a value that can be derived from the size of the solution domain, | fixed this value to be not
smaller than 0.1 meters (10 cm) which is a reasonable value when thinking of connections.

Fig2 shows a map representing values of minimum radius of curvature on the surface of an individual. Red colour corre-
spond to high values and blue to small ones.
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The algorithm|pseudo code

In this paragraph | comment the main subroutine of the code which is made by other several subroutines
that perform particular actions and return the necessary information to the main. The explanation of the
main gives a general understanding of the whole procedure while the rest of code can be found at the end
of the document in appendix A. Part of the subroutines, that i refer to in this paragraph, have already been
commented in previous experiment or in the previous pages of this chapter. This general comment can be
regarded as the “pseudo code” for the procedure.

pseudo code

- declaration of the variables and encoding of the necessary information for “sun analysis” and “wind analy-
sis” such as latitude, longitude of the site - orbit of the sun - wind direction, reference pressure etc.

- making the genome
for all the individual in the first population by assigning array of strings of random 0&1 numbers whose size
depends on the dimension of the chosen solution domain (line 276).

- generation 1 to max number of generations
after this point we are in the main loop which starts by redefining all the parameters every time a new gen-
eration is created in order to free memory and set them for the current generation (line 280).

- individual 1 to max number of individuals
nested loop in which each individual of the current generation takes shape out of its genome (line 308).

- forms builder

this subroutine is linked to a several other subroutine whereby it is possible to draw the form of the current
individual. Everything starts from a point cloud which is generated by using the information encoded in its
genome (line 320).

- first selection | gravity

the position of the volumetric centroid of each individual is examined in the way we explained when de-
scribing the fitness parameters. The result of this analysis are translated in a boolean variable, that has two
values True and False, with which we alter the state of the individual. If its morphology responds negatively
its state is set to False which means that will be excluded by any other performance evaluation. It will obvi-
ously not transmit its genetic information to next generations (line 327).

- surface analysis

the curvature of the surface that describe the individual is analysed for checking the location and the mag-
nitude of the minimum radius of curvature (line 342). This values is used for assigning the fitness parameter
that concerns the geometric limits for the individual.

- Facade to Floors Ratio

given the distance between two consecutive floors, the area for all the floors of the building is calculated.
This value is afterward used for computing the FA_R ratio and assigning the correspondent fitness criteria
(line 350). It is worth outlining that the area of the floors is computed without drawing the surface that
would describe them. This would take to much memory and slow down the whole procedure. One of the
theorem of the divergence formulated by Gauss is used for accomplishing this task. With this method we
need only the positions of points that describe the contours of the floors and through a series of operations
,based on vectorial calculus, we are able to retrieve the desired value. This procedure is illustrated in Ap-
pendix A page 67 line (1009 to 1067)
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Next

capsurf populationii),population cap (i)
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- mesh

the surface that describe the geometry of the individuals is replaced by a mesh by means of the subroutine
called “tri_facets” (line 345) which has already been examined in this chapter when explaining sun and wind
analysis. The mesh will be fundamental for retrieving geometric information such as the normal vectors for
each triangulated face and perform the analysis for solar gain and wind exposure. In addition, working with
mesh objects speed up the whole procedure because they are much lighter than surface objects in terms
of required allocated memory.

- solar_gain

after the mesh has been done, we can perform the analysis for solar gain and assign the value for the cor-
respondent fitness parameter (line 357). Throughout the whole procedure the array in which we store in-
formation such as normal vectors to the faces of the mesh, their correspondent pressure or heat value have
to be redefined for allocating new memory for next individual (line 362 or 384 etc.) .

- wind_exposure

using the same mesh wind analysis is performed. As already explained, it is first necessary to determine the
position of the upwind and downwind edge with the subroutine called “bounding box” and divide the body
of the individual in different zone following the British Starndard ENV 1991-2-4. It is afterwards possible to
perform wind analysis and assign the value for the correspondent fitness criteria (line 370 to 382).

- fitness function

once all the necessary information for computing the 7 fitness parameters have been gathered, we can use
these to feed the “fitness function” where they are combined in order to compute the “individual’s fitness”
(line 395 to 402). | think it is worth to examine this subroutine in the details and, therefore, | remind later its
description after different methods, whereby it can be implemented, will be analysed.

- indvidual after individual

these steps repeat iteratively until the maximum number of individual is reached ( which is decided by the
user). In this way we create our first generation and assign for each of its individual the correspondent fit-
ness value.

- preparing for selection procedure

we need to prepare the field for selection. For doing this, the values of the individuals’ fitness have to be
summed (line 427) in order to make the fitness of the whole generation. This value is used by the “Goldberg
roulette wheel” for choosing the individuals stochastically as already seen in the 1st experiment.

- preparing for breeding procedure
the allocation of array in which fitness values and genome (array of strings of 0&1) are stored in order to
free them for next generation and prepare for the breeding procedure (line 429).

- checking

in order to avoid that the computer crashes, we have constantly check that everything is stored in correct
order and in the appropriate array. Sometimes there might be missing information that causes serious trou-
bles for the stability of the procedure. This is avoided by the introduction of several check operators that will
act as filters not allowing incomplete information to be computed. In addition, along with the possibility of
having missing information due to problems with built-in methods of the software, the individual might not
respect some of the conditions imposed by gravity simulation, curvature limits or might self intersect. Also
in this case the check operators quickly discard the wrong configuration.
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-free memory 433 If [generation<maxgens) Then
once again keeping it light it is imperative for the stability of the procedure, which is why after having 434
. . . .. 435 If 1 T lati i =Fal Thi
done the mesh and the analysis we delete the surface that describe the geometry of the individual. ;> e et ion 1) oroios Thon
Considering that we still have the mesh describing its geometry and that we can always rebuild the 437 rhino.DeleteChiect population(i)
. . . 438 End If
nurbs surface this seams a reasonable choice (line 433 to 449). 430 End 12
440
- set mutation_rate | - o = I e e o 4 e e
the mutation rate plays a very important role when trying to avoid local maximum which is a common  aaz rhino.DeleteChiect population cap (i)
problem in genetic algorithm. The development of the mutation rate is also crucial for having a good 22; rod E:_jd I
degree of differentiation within a generation. The way | set this rate is made for ensuring maximum  4ae
exploration in the solution domain at fist generations and afterwards let the rate follow the fitness f}j; End If
trend and respond dynamically to its changes. If the fitness trend goes always upward, the mutation  44s Mext
rate will slowly increase in order not to ruin good solutions, while if the trend becomes downward, it %30
. . . . . . . . 451 If generation < maxgens Then
will decrease for allowing further exploration in the solution domain. We can play with different func- 4z i=1
tion for doing this and set how sensible we want the mutation rate to be according to the variation of =~ 453
. . . . . . . 454 """"""""""SEt.mut.at.iDnratE"""'"""""""
the fitness trend (line 454 to 470). It is worth saying that, for the way | implemented this function, the ;< If generation-1 Then -
higher is the value of the mutation rate the smaller in the probability of having mutation in one of the  2s¢
d . 457 If sumfitness (generation) >sumfitnessigeneration-1) Then
genes and vice versa. 455 mutation_div=sumfitness (generation]
458 operator=1
. 480 Else
- natural se/ech?n . . . L . . L. . 461 mutation div=swnfitness (generation-1)
as already seen in the first experiment, the individuals that have to transmit their genetic information  4ez operator=-1
to next generation are chosen stochastically by using Goldberg weighted roulette wheel. In this way 372 End It
the fitter individuals are more Ilkely to be chosen but also the less fit ones have a probablllty to be 455 mutation rate=mputation ratetoperator?® | (abs (sumfitness (generation)-suwfitnessigeneration-1)])/mitation div) “mutation sens factor
selected. The main reason for this is because they might have informations that can turn to be useful 222 Lt mubation tate-i Then mutation rate-i
generation over generations. The individuals are chosen two per time until the maximum number of  ses If mutation _rate<0 Then mutation rate=0
them is reached (line 473 to 478). 469
470 End If
471
-crossover/breeding 472 '————. ——————— natural selection Goldbery roulette —————————-
i . . . i L. 473 For i = 1 To max_pop - 1 Step 2
in the breeding procedure genome of the chosen pairs of individual are chopped in a random position 474
and swapped over for creating the genome of new individuals (line 480). e mum = roulette (sumfitness(generation),oldpop_fitness)
476 dad = roulette [suwfitness generation) , oldpop fitness)
477
- mutate 475 e CrOSS0VEr ——————————
. . . . . . .. 479
after having set the mutation rate, mutation might occur in the genome of the newly created individu- 455 crossoversplice oldpop genome (mum), oldpop genome (dad), pop genome (1), pop genome(i + 1)
als (line 484). a1
452 e WICLAT 10N @ ——————————————
453
- generation over generation 454 If Pnd > mutation rate Then
. . . . . . . 455 tat i
everything said above repeats as many time as the maximum number of generations is or it stops .. o igﬁ—g:igﬂ;:ih .
when a certain stability in the fitness is reached. If after a certain number of generation there is no a7 End If B
further improvement, the procedure will stop automatically. jgg Next
490
- monitoring it End It
in order to monitor the trends of all the fitness parameters and other kind of information such as mu-  as3 For =0 To max_pop*i0
tation_rate, size of the solution domain etc. can be exported automatically to an excel sheet. This is %24 _ ,
- A K . . ) 495 camwera (0] =startpoint (0) +300-80%3
essential for understanding the history of the evolution and for analysing the solutions. 495 cawera(l) =startpoint (1) -1000
497 camera (2 ) =startpoint (2] +300
495 target (0] =300
499 target (1) =startpoint (1)
=1uln} target (2] =startpoint (2]
So1 Bhino.ViewCameraTarget ,camera,target
502
503 MNext
sS04
505
s06 rhino.Print "gen="LC3tr (generation) £ gen fitness="£C3tr (suwmfitness (generation) )
507 rhino.print "mutation rate="iCEtrimutation rate)
505
s509 Next
510
511 exeel output sumfitness, Vol over Facade mean,vol over Footprint mean, Facade to Floors Ratio_mean,
512 _HeightCentroid mean, min curv radius_mean, Solar gain mean, wind fitness mean, mutation rate, words, scale noise factor
513
514 rhino.EnskbleRedraw True
515
516 End Sub
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Driving the evolution

The evaluation of performances of the generated configurations produces a set of informations (fitness parameters) which
are used for giving the Genetic Algorithm a direction in its searching. There are several ways by which this can be achieved
according to the context of application. Controlling the direction of optimization could mean not only to maximise or mini-
mise a parameter but also to examine its intermediate values. It is worth saying that the most creative step in which the
designer should interact with this system is in the formulation of these parameters, the way they are used and the under-
standing of their interconnections. At the highest level of abstraction the definition of the fitness parameter and the design
of means for influencing their influence can be considered as qualities that we want to embed in the examined topology,
which will be represented by their emergent morphology.

Minimazing | Maximizing

The simplest operation to control the direction of a fitness parameter is to decide whether it should be maximised or mini-
mised. It has to be said that, because we have reference values for scaling these parameters, some of them may be con-
stantly scaled to less significance respect to other ones [4][3]. This is due to the fact that when normalizing the fitness pa-
rameters, they are scaled according to their correspondent reference value which is directly related to the solution domain.
In this way it can happen that due to the dimension of its reference value, a parameter is scaled to a number (percentage of
fitness) that are much smaller respect to the others. Therefore, their weight in the building of the individual’s fitness value
can be underestimated. In order to overcome this drawback we can assign a weight factor for this parameter higher than
the other ones and raise its normalized value at the power of “x” which will further increase it (fig1 x=2).

For minimizing a normalised parameter we use the function “1-fit_norm” and afterwards this sum is raised at the power of
x. This would give high fitness value when having small value of the relative parameter.

Target

The objective is not always to minimize or maximise a parameter but also to observe the behaviour of the individuals re-
spect to a specific condition. This condition can be represented by a numerical value, target, against which the performance
of the individual can be compared. It goes without saying that there might be several targets, each of these related to its
correspondent parameter. The fitness value in this case is the higher when the analysis value lies closer to the target. It
is like observing the solutions with a Gaussian function and try to redistribute their qualities around a mean and having a
certain deviation.
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Standard deviation

For evaluating the uniformity of fitness parameters or its variation from an average value we can build a Gaussian curve us-
ing the value of each individual in a population (fig1). The deviation can be maximised or minimised according to how wide
we want the distribution to be. Having a small deviation might ensure good performance for a small group of individual over
generation but will enhance the risk of reaching local maximum. A local maximum is a condition where the Genetic Algo-
rithm hardly manages to step out. In this condition, it is not able to understand whether the current configuration performs
maximum qualities respect to its solution domain or only respect to previously reached values. If the standard deviation has
to be minimised, narrowing the solution domain for having faster convergence, it should be coupled with a high mutation
rate for not “playing always with the same cards” [3][4]. The mutation rate can be also set to be dynamically following the
trend of the fitness. In this way high rate of mutation are provided when fitness is at low values and small rate when fitness
is at high values for not ruining good solutions.

Distribution Graph

For controlling the fitness, a predetermined target distribution function can be encoded. The values of fitness are compared
with the ones of the target distribution and the sum of the differences is evaluated as measure of deviation from it. This
sum, which in the graph can be represented as the area in between the current distribution and the target one, can be mini-
mised in order to be closer to desirable values (fig2). This procedure can be also used to set a dynamic scaling of the weight
for the fitness parameters which can be, in so doing, weighted according to specified range of values.

Distribution Map

Extending the distribution graph in two dimension lead to have a three dimensional function for the fitness value. In this
way 2 dimensional array of target value can be specified which allows for studying the relation between two fitness param-
eters at time. Also in this case the values of the normalized fitness parameters are compared with the ones of the target
distribution and the sum of the differences, which in this case represents a 3 dimensional space, is evaluated. This sum can
be minimised in order to for the fitness to be closer to desirable values (fig3).

Fig 1
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Fitness Function

As already anticipated when describing the “pseudo-code”, we present the detailed explanation of the fitness function,
which is probably the most important part to be implemented.

Once all the fitness parameters have been computed, they are given to the fitness function in order to determine the
individual’s fitness. There are three main steps :

- normalise

reference values for each parameter is calculated in a separate procedure before running the algorithm. Being the
strategy for driving the evolution the one of minimising or maximising the fitness parameters, we have to calculate the
minimum or maximum value for each of those. These values vary according to the dimension of the solution domain
that we want to investigate. The size of the solution domain should be decided according to the characteristics of the
topology and the available computational recourses. In general too vast domains are not advisable while a good under-
standing of the appropriate size for it should be undertaken before running the system.

Using this reference values allows to normalise (line 1988 to 2002) the fitness parameters as already seen in the para-
graph “normalising the fitness parameters”.

- sensibility

in order to have more control on the parameters we can raise their normalised value to the power of “x” (figl & fig2)
, Which give us the possibility of helping the ones that are scaled to less significance to bring their contribution and to
make their variation sensible in a desired range (line 2004 to 2026). For instance, after running several experiment one
might notice that the normalised value of a certain parameter falls always in a low range of values. In this case we want
to make its variation sensible in this range in order to appreciate small differences between individuals whose fitness is
very close. For serving this scope we can use values for x such as 1/2 or 1/3 when the fitness norm (normalised fitness
parameter) has very small values generation over generation, x=2 or x=3 in the opposite case (figl & fig2).

- weighting

the fitness values are ready to be weighted which is the main control that we have for driving the evolution of our
individuals under specific purposes (line 2028 t02030). The assighment of an appropriate set of weights is not a trivial
task though. A possible strategy for their determination is explained in the paragraph “understanding the weights”.
Generally speaking the weights can be set for enhancing the contribution of a parameter (which represent its perform-
ance under a specific design criteria) while minimising other ones for studying to what extent the morphology of the
individual is affected by it.
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End

fitness_ function (ByRef indiwvidual fitness, ByWal individual wvolume, ByVal individual footprint,
_ Bv¥Val individual wvol centroid,ByRef indiwvidual height,ByVal individual facade area,

_ ByVal individual mwin curv_radius, ByVal individual solar gain, ByVal individual wind fitness,
_ Bv¥Val Facade to Floors Ratio,ByVal who,ByVal generation)

Dim ¥V _ower F&,V over FT,V owver Fi norm,V_over FT norm
Dim wvol norm, footprint norm, facade area horm

Dim centroid height norm, centroid height

Dim height norm, max Curvy_horm, max_ curv

Dim famade to_floors_ratio horim, Cot

Dim £1,£2,£3, £4,£5, £f6, £7

'norm height centroid

centroid_height_narm=(individual_val_centroid(2]—min_volume_centroid_height]f_
_(mwax_wvolume centroid height-min volume centroid height)

'norm curvature

max_curv=1findividual_min_curv_radius

max_curv_norm=max_curvfmax_curv_limit

'norm FiL R

facade_to_floars_ratiD_norm=facade_tD_floors_ratiaffacade_to_flDDrs_ratiD_max

'norm height

height_norm=individual_heightfmax_height

V_Dver_FA=individual_volume(D]findividual_facade_area(D]
U_Dver_FT=individual_vnlume[DJfindividual_fnntprint(ﬂ]
V_Dver_FA_nDrm=(U_Dver_FE—V_Dver_facade_Area_min]f(V_Dver_Facade_Area_max—v_over_Facade_Area_min]
U_Dver_FT_nDrm=(U_Dver_FT—U_Dver_FDDtprint_area_min]f[U_Dver_FDDtprint_area_max—U_Dver_Fnatprint_area_min]

f£1=(V_over FL norm“0.5
f2=(V_over_ FT norm)“0.5

Pttt Height of Centroid '
fi=centroid height norm®2
Illllmaxcurvllllll
If abs[ma;_curv_norm]<1 Then
f4=£1—abs£max_curv_norm]]*2
Elze
£4=0
End If

LI I I | SDlar galnl LI I I |
f5=(individﬁal solar gain) 2

LI I I | Wlnd fltHESS' II_I LI |
f5=(1—individual_wind_fitness]*2

'Y Facade to_Floors ratio
If facade to floors ratio>1l Then
£7=0
Elze
f?=(l—facade_to_floors_ratio_narm]*2
End If

"' opercentage fitness''t !
cot=wl4wz+w3i+wrd+usS+wa+uw?

individual fitness=( (wl*fl+w2 "£2+u3 *£3+wd*£44+yS+E£5+wo E£6+w? 7£7) /tot) 100

Zub
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Evolution

Fig1 shows the first and the last generation of one of the numerous experiments that have been run over the course of
this research. What is clearly evident, looking at the picture, is the striking difference between traits of members of the
1%t generation and the ones of the 30" generation. Although they all share the same topology the characteristics traits of
the last generation can not be inferred from the ones of the first one. The final morphologies are the result of a continu-
ous remodelling of the form of the individuals under the indirect influence of the fitness parameters. Their traits have not
been consciously encoded but are the result of a process that starts with an abstract representation of their topology. After
several generations it manages to translate the influence and the contrasting relations of the parameter that govern the
evolution into shapes. Looking at the set of weights that has been assigned for this experiment, it can be seen that the influ-
ence of parameters concerning spatial organization such as “Height_of_Centroid” are dominant over the others. The height
of the individuals of the 30™ generation is bigger than the one of the 1* generation and the majority of them features a
pronounced increase in volume along the height. In the majority of them the abrupt changes in the curvature featured by
the individuals of the 1% generation are no longer present. The reason for that can be found in the influence of the above
mentioned parameters whose main action is to favour the allocation of volume at the top side of the individuals as well as
an increase in height.

Although this can be regarded as a successful result, the understanding of the influence of the fitness parameter and their
interconnections have yet to be explored. The type of optimization that this procedure seeks to reach, does not lead to
the fulfiiment of the optimum for the parameters singularly taken. It tries to gain a balanced compromise between these
which, most of the times, tend to balance out as the improvement of one lead to spoiling another one.

Consideration should also be given to the way | implemented the generative system. The developmental process is embed-
ded in the algorithm and can not be subjected to neither modification nor evolution. The abstract representation of this
topology that | first imagined and afterwards encoded in the developmental process allows, by means of evolution under
certain design constraints, to generate a great variety of forms. Although this is true, the possibility for the developmental
process to evolve , or better saying to auto-evolve, would lead to truly “emergent” configurations. | referred to the term
“auto-evolve” because the only way for deriving solution to problems that are divorced from our assumptions is to find a
way for developmental process to be autonomous [11].

generation 1st generation 30th

wl=4
w2=4
w3=10
wi=4
w5=6
wb6=6
wb6=8

weights

V_over_FA
V_over_F
H_centroid
curvature
solar gain
wind exp.
FA_R
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which are x and y coordinates. The domain has been set to “words 7” which means that each coordinate is encoded in a

string constituted by 7 bits. After its decoding , therefore, it can assume a value from 1 to 255, as already explained in the

15t experiment.
The mutation rate starts from a value of 0.1 for the initial generation which means that there is the 90 per cent of probability

of having mutation within a gene. The rate follows the trend of the sumfitness adjusting dynamically its value according to
it. Sumfitness is the mean for each generation of the individuals’ fitness resulting from the weighting procedure. When the

fitness trend stabilises, around the 15" generation, it assumes a value of 1 which means that there are no more possibility
of having mutation. In this way there is a maximum exploration of the solution domain at the outset of the searching rather

values of the fitness parameters for each generation representing in this way the overall progress. The individuals for this
simulation have a planar configuration of sections. This means that there are only two genes or numerical value each point
than at the end when a mutation might ruin a good found solution.

Are here reported the monitoring of the trends for the fitness parameters over generations. The trends shows the mean

Monitoring the evolution
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Understanding the weights

When having different fitness parameters the designer needs to decide a proper set of weights according to their design cri-
teria. A weight is just a number that can be used for guiding the evolution with the fitness criteria that are more important
for the designer. Before assigning the set of weights we should know , within the scope of a specific experiment, to what
extent a fitness parameter contributes to the whole individual’s fitness. When starting exploring a topology it is worth doing
a set of experiments with one fitness parameter at time in order to draw a benchmark against which will be possible to con-
front the performance of the individuals when having more than one parameters. For instance, fig1 shows a set of weights
where the parameters related to the influence of the physic environment are dominant over the course of the evolution.

weights

wl=5 V_over_FA
w2=2  V_over_F
w3=3 H_centroid
wi=2 curvature
w5=10 solar gain
w6=8  wind exp.
w6=3 FA_R

Although the weighting procedure allows the system to be responding to different architectural scenario and to guide the
evolution under different design constraints, the decision of the value of the weights can not be made without the knowl-
edge, at least at qualitative level, of the degree of the influence of the correspondent fitness parameter. It is necessary to
be able to examine and understand the interconnections between the fitness criteria in order to navigate safely the solution
domain. In case there were only two parameters, it exists a range of best solutions according to the importance that each
parameter has in relation to the individual’s fitness value. In layman terms, there is a combination of their correspondent
weight that can generate very good solutions. This consideration becomes much more relevant when having several pa-
rameters whose influence often balances out the contribution of the other ones. There are two main strategies that we can
deploy for deciding the set of weights :

- dynamic response weighting
- fractional factorial design

With the first strategy it is possible to vary the intensity of the weights when the algorithm is running. This can be done in
a way that, each iteration, the weights are scaled in reference of their mean value. In so doing we help the fitness param-
eter that are scaled to less significance in the normalization procedure. In addition it is possible to assign some rules to the
weighting. For instance if we are interested in studying the response of our individual to a sub-set of fitness parameters,
their weights can be coupled with rules concerning the time of their activation, proportionality or inverse proportionality
[4][4]. As already outlined the best way for performing a Multi objective optimization would be to use a Multi Objective
Evolutionary Algorithm procedure MOEA such as NSGA IlI, SPEA Il, DMOEA etc. This goes for now beyond the scope of this
research.

The second strategy, explained in the details in next paragraph, is based on a filed of statistics that regards the analysis of
problems where a set of independent variables is connected to one or more global outputs of the process in which they
are defined. The aim of this analysis is to attempt to understand which are the most influent variables related to a particu-
lar outcome that we want to study. For instance in the case of this 3rd experiment we have 7 fitness parameters with 7
correspondent weights whose intensity and mutual relations determine different result in individual’s fitness. In addition,
although this variables are formally independent, there are strong relations between some of those that yield to have dif-
ferent unpredictable results in the global outcome. For instance parameter such as “Volume_over_Footprint” of “Height_
of_Centroid” might have a positive or negative influence on others parameter such as “Wind_exposure” or “Solar_Gain” or
viceversa. The attempt of this analysis is, therefore, to gain the knowledge of the dependency of the outcomes from these
variables, which ones are the most significant and which ones produce noise disturbing the direction of the evolution. It is
worth saying that with this strategy it is possible to examine not only the mutual interconnections between fitness param-
eters in relation to the individual’s fitness but also in relation to a particular fitness criteria. This allows the system to have
flexibility according to the particular scenario in which it might be used.

In the next two pages | introduce, very briefly, the fundamental concept of “fractional factorial design” and explain how this
method can be used as supporting tool in order to decide an appropriate set of weights which suits the realm of different
context of application.

—

Factorial Fractional Design

Factorial design is a way of conducting an experiment when there are two or more independent variables that have a set
of discrete possible values. These are tested in all possible combination in order to understand the their effects on the re-
sponse of the system [12]. Experimenting all possible combinations would obviously give a full understanding of the main
effects and of the internal relations between two or more variables but if the numbers of factors is high this method is not
feasible time wise. To overcome this problem it is possible to carefully choose subset or fraction of the domain of a full fac-
torial design for gaining an understanding of the most important features of the problem studied and limiting the amount
time that this requires. The most important steps in experimental design which was first formulated by Sir Ronald Fisher
are:

- Comparison

Factorial design is mainly based on the result that come out of a set of experiment in order to understand the effect of the
variables which imply the creation of a standard environment to refer to, over the course of the analysis [12][2].

- Randomization

The philosophy of this method is to study the behaviour of a system not deterministically but rather probabilistically. This
can yield to an understanding of it that goes far beyond any predefined theory whose constraints might limit the explora-
tion of it. However, this method implies the running of a set of experiments that has a cost in terms of time and resources
[12][3].

- Replication

The replication of the same experiment leads to an understanding of the non controllable factors that can cause noise in
relation of the global outcome [12][4].

- Blocking

The arrangement of similar subset of experiments within the total set of runs that have to carried out yield to the under-
standing of the irrelevant source of variation between the variables. If there is a particular subset of variables of interest it
is possible to design a block of experiment where the nuisance factors are held constant and in so doing the variation of the
factor of interest can be studied with more precision [12][5].

- Orthogonality

Orthogonality in experimental design refers to the possibility of having each experiment completely independent from the
other ones which ensure the gaining of different information for each of those. It is not always possible to have orthogonal-
ity and the fundamental requirement is that the values of the variables have to be normalized [12][6].

- Analysis of variance

The analysis of the variance of the global outcome can be done partitioning its domain into components directly related to
specific factor in order to test the influence of this on the outcome. This is the step where we eventually understand the
contribution of different factors separately or in combination which give a map of information regarding the most significant
and less relevant variables involved in the process [12][7].

Important contribution to this field was made by a Japanese engineer Genichi Taguchi who introduced new ways of concep-
tualizing an experiment, such as parameter design and tolerance design, along with fractional factorial design methods that
have been extensively used by U.S, India and Japan in a wide range of manufacturing industries.

In this method | see the possibility of gaining a qualitative understanding of the relations between our fitness parameters
and the global outcome. This understanding act as a support when choosing the set of weights for the parameters in rela-
tion to the particular scenario that one want to investigate.
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From full to fractional

Our task is the gaining of a qualitative understanding of the effects of the fitness parameters and their internal relations on
the individuals’ fitness. In order to understand how this method can be applied for our task, | describe in this paragraph how
the number of runs in an experiment where there are n independent variables can be fractionated to a small number with
the utilization of factorial fractional array.

The simplest full factorial design consist in having three variables (factors) with two values each +1 and -1 representing the
high value and the low value respectively. A design with all possible combination require 2% runs, where k is the number
of factors and 2 the number of values for each factor, which means that for our simple design we need to perform 8 runs.
The number of runs required using full factorial can increase very fast if the number of factors and values should augment.
Considering that in our case we have 7 weights to assign with 10 possible values each ,the number of runs would be 10’
which would take an infinite amount of time considering the resources that we have [12][8].

Going back to our simple experiment we can represent a full factorial as shown in fig1 where X1,X2,X3 are the factors, the
arrows show the direction of increase for the values of the factors and the numbers stand for the order of runs. For instance
at run 1 all three factors are at their low level and instead at run 8 they all are at their high level [12][9].

If we run all the possible combination and we store all the observation values and the level of the factors we can build a ta-
ble as shown in fig2 where Y is the observation. The right-most column of the table indicate the responses measured for the
experiments. If a first order effect C1, such as the influence of X1 has to be investigated, we have to compute the average of
response ( observations) at all runs with X1 at the high level minus the average response of all runs with X1 at low level :

el = (143 (w2 +ya + 35 +yg) - (VD0 +y3 + s +7)
o1
o1 = (UE3H5TH5 1453 ) - (1/4(33+41457+59) = 8.5

For reducing the numbers of run to do we can build trough a technique called “blocking” a fractional array out the the full
one as shown in fig3. In this array we do not take into account the runs represented by the full black circles in this way re-
ducing of a half the number of the experiment to do[12][10].

Computing the same first order effect on the observation as previously done with the full factorial gives:

o1 = (172} (ra + 6] - (1/2) oy + )7 or
1 = (12) (574513 - (1/2) (334591 =8

The values of the effect for X1 are very similar which demonstrates the effectiveness of the factorial fractional. It is worth
saying that although we economise on the number of runs there is also a price that we have to pay. This price is called in
the terminology of the field “confounding” and means that when doing a fractional factorial some of the main effects are
confused with some of the second order effects such as the interaction between X1 and X2 often represented with the
symbol X1*X2 [12][11]. Considering this we have to carefully choose our fractional factorial according to the purpose of the
investigation and possible assumptions that can be done before setting the experiment. Usually lower resolution fractional
factorial are used for examining first order effects considering them more important than the others, while higher resolu-
tion ones allow to consider also second order effects.

Fractional factorial are available on the internet and in many books where one can find even the description of the “con-
founding” and , therefore, choose the most appropriate array for their problem [12][12].

With regard to our experiment we have to cope with 7 factors 10 levels each. In order to economise further more on the
number of runs to do, we have to abandon the idea of using all possible values of our factors and reduce them to at most
3 level. For each factor (weights) we chose to have three possible value 1,5,10 which are the minimum, medium and maxi-
mum value. Even with this assumption the number of experiment that would take for performing a full factorial would be 37
or 2187 different runs which is not feasible for our resources. Considering that we are interested in investigating principally
main effects of the weights on the global outcome and that we can always shift the observation from the individuals’ fitness
to one of the other fitness criteria, a three-level fractional factorial seems the appropriate choice. This design requires 27
runs after which screening operation mainly based on Taguchi methods allows to understand main effects of our factors
(weights) on the individuals’ fitness, or to be more precise on the mean of these values for each generation. These informa-
tion will be afterwards used in next experiments for tuning the weights according to the purpose of the exploration.

Figl
X1 X2 X3 ¥

1 -1 -1 -1 ¥ =33
2 +1 -1 -1 y1=63
3 -1 il -1 yi=41
4 5| +1 -1 rq=757
5 -1 -1 +1 y5s =157
[ +1 -1 +1 ¥s =151
& -1 +1 +1 ¥y =159
8 +1 +1 +1 yg =153
Fig2

Fig3

46



Taguchi methods|optimum set for the weights

c
=}
3
=
3
N
3
w
-3
N
3
Ul
3
[e)]
3
~

As already said in the previous paragraph our aim is to investigate the main effects of the fitness parameters on the global
outcome represented by the mean of the individuals’ fitness for each generation. This will derive a set of possible combina-
tions of their correspondent weights that yields to optimum solutions. With regard to our procedure it must be said that
there are some noise factors that are not controllable, which are mainly caused by the mutation rate. Our program can
generate same sequence of random numbers which are the initial values for our design variables. It is worth remembering
that the design variables are the coordinates of the points that are used for building the geometry of our the individuals
each generation. Even if two experiments share the same sequence of initial variables, it is not ensured that the result will
be exactly the same. The reason that causes this phenomena lies in the continuous adjustment of the mutation rate which
follows the trend of the fitness trying to avoid local maximum. In order to evaluate the main effects of the weights we need
to take into account the presence of this nuisance. One of the main contribution of Taguchi to the field of experimental
design was the introduction of the noise factors as integral part of the observation when experimenting the combination
of the level of the controllable factors. Noise factors are responsible for causing the functionality of the process to deviate
from target value. Instead that using the standard deviation as a measurable value in order to find the set of combination
of the values of the controllable factors that yields to optimum solutions, Taguchi introduced the Signal to Noise ratio [13].
This is an index of how the nuisance can affect the performance and its evaluation free our design experiment from the
presence of noise. However, also in this case there is a price that we have to pay. In order to evaluate our process with S/N
(Signal to Noise ratio) we have to repeat each single run more than one time. Considering our resources, each run can be
repeated not more than three times which brings the numbers of simulation to be done at 27*3=81. Each simulation takes
approximately 15 minutes (with 30 individuals each population and a maximum of 30 generations) with other additional
5 minutes for examining the results and calculating the Signal to Noise we reach 20 minutes. 20 minutes*81 times = 1620
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minutes which are 27 hours. Even if this number might seem excessive it is worth remembering that we are trying to un- 16
derstand the main effects of the parameters of a 7-dimensional problem whose solution domain is a permutation of 120 17
(number of variables for individual) * 5 ( size of the string of bits in which each variable is encoded) = 600 factorial which 18
can be considered an infinite number. 19
Going back to the meaning of S/N ratio in practice its main advantage is that its evaluation allows to minimise the deviation 20
when keeping the mean on target while usually when the deviation decreases, the mean decreases as well.
The S/N ratio can be divided in three main categories: 21
5 T 22
SN =10log — S/N = -10log =S 52 BIN = -10log =3 — 23
Ty P ¥
nominal is the best smaller the better larger the better 24

N
(S}

N
(o)}

where ¥ is the average of observed data; sy2 is the variance of y; n is the number of observations and y is observed data.
The one that suits our task is the “larger the better” because we want to understand the combination of weights that yield
to maximise the mean of the individuals’ fitness for each generation, which is our observation (y) [13][2].

To summarize, we run 27 experiment following the Taguchi fractional factorial array (fig1) for the assighment of the values Figl Taguchi 3 levels fractional factorial
(levels) of the factors (weights), repeat each experiment 3 times. We then compute the S/N ratio for each set of repeated

experiments using the observed data which is the mean of the fitness of the individuals at the best performing generation.

Eventually we have 27 S/N ratio values that can be used for evaluating the contribution of each weight at each level.
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For doing this we need to average the sum of the S/N ratio for each weight at each level and afterwards evaluate their dif- Average Signal to Noise ratio  Main effect

ferences. The bigger the average value for a weight at a level, the more important is that level. The bigger is the difference

between the maximum average value and minimum average value for a weight, the more important is the weight. factors Level 1 Level 2 |level3 | L -L optimum combination
This can be unders‘Food by saying that because we w§nt to maxi.misej' the individual’s fitness, the bigger is the change in this w1 (Vol_over_FacadeArea) 26 31 )8 5 W15
value, when changing the level of a factor, the more important is this factor.

In this way we can rank the weights in order of importance listing which weight at which value contribute the most to the w2 (Vol_over_Footprint) 36 31 24 12 w2=1
global outcome. Fig2 shows very synthetically the explained procedure and two very interesting and unexpected results. w3 (Height_of_Centroid) 34 39 42 8 w3=10
The parameter “Vol_over_Footprint” and its relative weight are the most influencing ones and their contribution is maxi- w4 (min_curvature) 24 18 14 10 wa=1
mum when the weight is set to the minimum value. This means that his parameter affects negatively the whole process - ~
which is something that happens when trying to co-evolve criteria that balance each other out. Same can be said about w5 (solar_gain) 26 27 30 4 w510
“min_curvature” which is the second in order of importance and its contribution is maximised when the value of its weight w6 (wind_exposure) 29 30 35 6 wb=10
is at the minimum level. In this way we have the whole map of influence of the fitness parameter and their correspondent w7 (FA_R) 26 27 25 2 w7=2

weights in respect to the observed data. This will tell us directly how we should set the array of weights according to our
purpose. The application of this set of experiments, shifting the observed data from “total fitness” to one of the fitness
parameters will give other informations regarding the appropriate set of weights that we need to assign in case we want to Fig2
change the direction of evolution. In layman terms this procedure provide a method for using our proposed methodology

that can satisfy the needs of different purposes contextualised within different architectural scenario.

—




Solar gain

Fig2 & Fig3 show some of the individuals of the 20th generation for an experiment where all the fitness parameters , except
the ones that concerns solar gain, are set to zero. At the and of the procedure they all have a morphology whose most rel-
evant trait is to have the main dimension oriented perpendicularly to the mean of the directions of the sun( 9a.m. to 3p.m.
21st of December) . This happens because they try to gain the highest value of solar detection possible within the size of
their solution domain. The individuals shown in fig2 & fig3 are obtained starting from a different set of random numbers(
initial position of points which are the genes of individual) but having same weights. It interesting to see, when looking at
the trend for the fitness parameters, that they all benefit from this effort to detect as much daylight as possible although
their correspondent weight has been set to zero. The value of solar_gain stabilises around 0.34 which means that the 34
percent of the mesh faces manage to capture more then the 60 percent of the daylight (see solar gain|fitness at page 26 ).
A cylinder, having same height and same area, performs a value of 0.24 (fig4).

i ' \,{'
Ia
¢
; i X i
\ {
Figl
12 :00 =]
11:00
14% o
14:00
15:00 AES
15:00
solar_gain solar_gain
0.37 0.34
Fig2 south facing wall front view Fig3

weights
wl=0 V_over_FA
w2=0 V_over_F
w3=0 H_centroid
w4=0 curvature
w5=10 solar gain
w6=0  wind exp.
w7=0 FA_R

solar_gain
0.4
; 0.35
\ # 0.25
! 0.2
L . l 015
| 0.1
1 p 0.05
& o ‘-*3 ’
\I L " — ™~ m =t (Tp] o r~ [es] L=a} L= — ™~ m =r un o ~ w {=a =
i A 555 55565552222 =z2¢2z% % %
- zzzezzgzzzezgiIififiEfZfEEECECE
\' EEEEEEEEEEEEEEEEEEEE
' ZEE L EEEEE S S s e s B R B OB oOE
. . tEERREEREEEEEEERRERE
- i B RS8R 8 28 B & B &
[ 1
A L
N 0 degree
{ RGB(255,0,0)
I
’
. <
3 -
f '\I
‘ 90 degree
RGB(0,0,255)
genertion over generation
B 12 :00
13:00 11:00
10:00
9:00
solar_gain
0.24
south facing wall front view Figd

48



7/ Y/ l[[l 77 7~
;z ] e
9:15 9:30 avard 09:45 Fbararavara 10:00 10:15 10:30 HZFVVZ 7
228 “PaizzE e
L1717 Hﬁgg 7,
1] Vv 1 e et
% ) | avaVavy
el ) ‘;g' Eia” ﬁé%%gméi
) a Viiiﬂzzw boooo T
Vava \ANAAAA {A’ Vavavaviviva) /i
\/ gvvvuu‘v’m ﬂﬂugnugv’v’m
i )
2\/\ éV ‘Ya
4 1
AVA
P
]
ZAV4VAl
VeVl
4 4
L4557 s (/1717758 7777777
b 7 n{zzr@ %
10:45 ,‘Ej 5;,! 11:00 11:15 A 11:30 11:45 12:00
% > g
F e
ravav A T2
/\ (VAVAY:
.
VAAVAVAVAVAVAVAVA')
»VAYIAVA%" A
LA/ A
ATAVAYAYAYA')
ahannis
V7 Y
aaé
4
o oo
VZZVAVVA
7 - 7 V [I,l /[[
y 57 74
12:15 : 12:30 % 12:45 13:00 A 13:15 13:30 ! !ﬂ‘
% / 2% s
7] % %% | ‘;,
Z Z 244 Kb
vV 7 AT W
v v v 4 2 Jlaravara
% re ez g7
"L % E Z ﬁarzz Z VAYAl 7
/ / AVAYAVAY4
K00 X ym%g'ﬁ% i, A
W7 N\ AV AAAA 1A MAAAN
Y J
A7 I lk‘ﬂ%" VAVA VAVA AVAVAVAVAVA'
/ Y, WA A
: ' I
4 /)
p A4
z ]
L\
\ -\ &
s 2L
7
V] 44
; 14:00 ; 14:15 A 14:30 A 14:45 15:00
44 /
7 i i i
7 1 %% a7
A 147 1] fh
aarars A lava e
% iV A i
ALz iz 1% 1%
VY
NV

WA

N
O

¢

i

Ay

ravav;
7
i

sunpath from 9:00 to 16:20|40 minutes frame rate

shadows clustering taken on the 21 of December at 51.4879° Latitude -0.178° Longitude, London



Wind exposure

It is here presented one of the member of the 30" generation for an experiment where all the fitness parameters, except
the one that concerns the wind exposure ,are set to zero. At the and of the procedure the individuals present a morphology
whose most relevant trait is to have a highly pronounced “V-shape” which is aligned with the direction of the wind(270
degree east). This happens because they try minimize the exposure to wind orienting their surface in order to avoid to
experience high positive pressure. The table in fig2 shows the trend of wind_expsure for this experiment which decreases
steadily from the 1%t generation and stabilises around a value of 0.42 for the individual of the 30" generation. The value of
wind_exposure indicates the percentage of triangulated faces where the absolute value of pressure is bigger than the 60
percent of the value of the reference pressure. In this way we test the efficiency of the shape at not producing high value of
positive or negative pressure which occurs mainly on the roof, lateral and back side of the individual respect to the direction
of the wind (fig1 bouding box represented by black dots). In order to have a term of comparison we tested the morphology
of a model which represents the Gherkin (fig3). Its value of wind_exposure is 0.64 which means that the 64 percent of its
surface experiences a level of pressure which bigger than the 60 percent of the value of the reference pressure. The same
parameter for our individual is 0.42 which indicates, therefore, a higher efficiency of its morphology respect to wind flow.
Although this comparison demonstrates the effectiveness of the procedure, phenomena such as turbulence is only empiri-
cally taken into account, using the laws given by the ENV 1991-2-4, while vortex shedding is completely ignored. Although
this shortcoming would make the procedure incomplete for an accurate analysis of a form exposed to wind flow, the proce-
dure can be regarded as reliable for the scope of this research.
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Varying the weights

The configurations here presented are obtained by combining all the available fitness parameters. Figl shows a solution given
for a set of weights where parameters concerning spatial organization such as “Height_of Centroid” and “Wind_exposure”
dominate the evolution (runi). There are some traits that remind of the ones featured by members of the simulation shown in
the previous page where only the “wind_exposure” were activated. The sharp appendices at the top aligned with the direction
of the wind are the most evident. However, “wind_exposure” influence is here balanced by the other parameters that lead to
morphologies presenting a higher position of the volumetric centroid and a smaller “Facade_to_Floors ratio”.

Fig4 shows a configuration obtained starting from an equal set of random numbers (position of points which are the genes
of the individuals) respect to the previous experiment but having this time a different set of weights (run2). For this simula-
tion spatial organization parameters are weighted to a greater extent, which is recognisable observing the morphology of the
individual shown in fig4. The most relevant traits for it are a very high position of the volumetric centroid, a small Footprint
area and smoothness of its envelope. It is worth saying that these two configurations are obtained stating from the same set
of initial genes. However, the individuals are evaluated in two different environment, simulated assigning two different set of
weights for the fitness parameters. This demonstrates to what extent the environment can influence their morphology. The
tables below show the trend for the fitness parameters for runl and run2.
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Artificial Neural Network
Intro

In this chapter are presented some of the experiments that aimed at engaging with another artificial intelligence technique
called Artificial Neural Network. The work on Neural Networks builds its foundation on the extensive research carried out by
Christian Derix at the UEL, for further reading see “Approximating Phenomenological Space” [14]. The research on this topic
proceeded separately but parallel to the one illustrated in the previous chapter. They crossed when at a certain point in the
research, the question of how would it be possible to derive and internal subdivision of the generated configurations that
respected their external morphology, arose. A distribution of volumes that behaves not only according to an architectural
program but also influenced by the traits of the generated spatial configuration.

With regard to the application of artificial neural network that i develop, it has to be said that it is not integrated in the sys-
tem described in the previous chapter but it is performed post-facto on one or more of the generated configurations.

An other interesting way of applying this type of neural network would be their integration with the evolutionary tech-
niques for the development of an unsupervised mechanism whereby evaluate and select the individuals (“Architecture’s
New Media, Yehuda Kalay (2004)) [15].

SOM: Self Organizing Map

Self-organizing maps (SOMs), invented by Professor Teuvo Kohonen, are a data processing techniques part of the artificial
neural network developed by the perception network (Rosenblatt,1962). The training of this type of artificial neural net-
work allows to produce low-dimensional representation of a higher-dimensional input space.

Like all the others neural networks, the way SOMs operates mainly consist in training and mapping. By using this particular
type of NN (Neural Network) is possible to codify in the inputs some information and process these data obtaining a map
that shows the emergent relations between the inputs. The information that is possible to encode can be any kind of data
including geometric description of space [14][2].

The structure of SOMs is made of layers or nodes (neurons) to which is associated a position in the network and a weight
vector that has the same dimension of the input vectors. The way the nodes are arranged can be any sort of two-dimen-
sional or three-dimensional grid. In the terminology of the field a “weight” is the thing that is accociated to both nodes or
inputs.

A simple example for describing a type of SOM, is having a network made by 25*25 nodes (just in this case but the dimen-
sion may vary according to the dimension of the input vector) and an initial set of input vectors (fig2). The picture shows a
grid of nodes where for every node there is an associated vector(weights). The input vectors are the one at the side of the
grid in red and labelled with numbers from 1 to 6. This example is borrowed from one the application of SOMs developed
by Christian Derix at CECA.

It is worth mentioning that in this case the weights are represented by the orientation of the vectors associated to the nodes
and, therefore, they have two components the x and y cosines. As already said above it is possible to encode in the input
any sort of data for the network to map and they do not have to be represented only by geometric vectors. They can be
everything that it is useful to visualize the data that we want to encode.
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Learning Algorithm

F A \4 LT TR R N |
What mainly a SOM does, is to self-organize a map in which different parts respond in the same way to a certain sub-space T T T S O S S A S R
of the input space. In layman terms they can display emergent properties, represented by clusters, of the input space that T B R A o e R S S
are not possible to visualize in other way. T - T R S S A R S S
The weights for the neurons are usually initialized to random values. The way in which input vectors and network interact is e e S S S T VI ST s
to find the node whose weight vector is the closest to one of the vector of the input space and to locate the position of this T S S
node in the map. This node is called Best Matching Unit or simply “the winner” [16]. S e T U
This can be done with different techniques such dot product or euclidean difference. Those vectors should be normalized as ) )
well as their components should all have the same dimension in order to be comparable. With this procedure all the nodes oo s m s s s s e s e s s s 7 = =~ +| ) radius of influence of the
are compared with all the input vectors, one by one, finding each iteration which is the one that is closest to each of them £ L RS S e s s e e 5 3 R em S fed e ow x| winner (neighbourhood)
[17]. S R S T s 1 R T
Once the winner for an input vector has been found, its Euclidean distance to all the others nodes is computed (topologi- S O e O Tt e S B S L
cal distance in the network). At each iteration there is one winner node to which is associated a certain radius of influence =S A SR SR SR A S SRR S sl e & B, hast matching unit at
(neighbourhood). Its weight and the weights of all the nodes, whose Euclidean distance from the winner falls in the neigh- T T ST N N iteration i
bourhood, will be adjusted to be similar to the correspondent input node fig3 [17][2]. The degree of adjustment is defined L ROV ST Pe oy (PSR
by the so called learning parameters. There are usually two set of learning parameters, one for the winner and one for the e R T T . T TR o
others neurons. Both can be represented by a monotonically decreasing coefficient but the one for the winner is constantly R N I

higher than the one for the other nodes. This means that when the network starts mapping, the learning parameters have
a high value because there is a lot to learn, and iteration after iteration they need to be adjusted to an ever smaller extent.
In addition the radius of influence of the winner will also decrease through the iterations [17][3].

To summarize, the magnitude of changes for weights of the nodes in the network decreases with time and with distance
from the winner (figl). “Learn” representing the learner parameters is function of t (time) while N (neighbourhood) is a
function of “d” (distance from the winner) and t (time), Wi is the weight of the inputs, Wn the weight for the nodes.

.
]

Wnit+ 1) = Wn(t) + N(d, t) % Learn(Wi(t) — Wn(t)

Figl i
Fig3

With regard to neighbourhood function, a way for representing it is the Mexican Hat Function (fig2). It is easy to see that

neurons close to the winner will be “excited” to adjust their weight towards the input weight. With the increasing of the

distance the magnitude of change decrease as well, until it becomes negative (inhibitory feedback). This means that the

nodes that are outside the neighbourhood will adjust their weight to be different from the winner at iteration i(i meaning

current iteration). clusters at final iteration

As already seen for Cellular Automata ensuring simultaneity is the key of success. This mean that each iteration (loop

through the input vectors and comparing the weights for all the nodes with each of them) the difference between the

weights of the input vectors and the ones of the nodes have to be only computed without adjusting the weights of the

nodes (in this case the orientation of the geometric vectors). Only after having computed all the differences for the current

iteration we can update the network simulating in this way simultaneity. This procedure repeats several times until the map

converges distributing the features (weights) of the input vectors into clusters (fig4).
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inhibition inhibition -
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i
F
Figd

54



Self Organizing Maps -3D Topologies

Along with the already discussed self organizing maps that clusters input vectors into relations there is the possibility of
making SOM starting by 3D topology [14][3]. The difference between these two is that the 3D topology can represent a
spatial configuration which might be a surface of a volume. It is worth saying that the emergent cluster of the network, after
the “training”, is not encoded in it. It is the emergent representation of the relations between the inputs and the topology of
the network. With regard to the experiment shown in this paragraph, it can be applied everything said for the 2D topology.
This time the weights will be the 3D spatial coordinates of the nodes and input vectors fixed points in the space as can be
seen in figl. The 3d grid at the centre represents the 3D SOM and the red circles at the corners are the input vectors. The
nodes will continuously adjust their position influenced by the action of the inputs while keeping the topological relations
with their neighbours.

Fig1 shows the starting 3d network while fig2 the emergent cluster where, between the nodes that lie on the lateral sur-
faces, have been drawn mesh faces. The drawing of rectangular mesh faces between the nodes is possible because their
topological relations are mantained. These example shows the possibility of training a neural network for solving a numer-
ous variety of problems.
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input vector
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input vector

. input vector
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o z

Figl 3d network, itaration 0
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Fig2

3d network, cluster at final iteration
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3D SOM- spatial clusters

The research on artificial neural network and Genetic Algorithm meet together in the attempt of deriving an internal sub-
division of space that is related to the morphology of the generated configurations. One of the fitness parameters used in
the 3 experiment is related to the solar radiation that the individuals manage to gain on the 21st of December from 9:00
to 16:00. Solar gain, for one of the generated configurations, can be visualised with map shown at the left side of fig2. This
map is the visualization of a series of arrays that describe vertex by vertex the colours of the mesh. For each vertex of the
mesh is associated a vector in which are encoded the RGB value for the neighbouring faces. This description of the map
reminds somehow at the input vectors that we had when explaining SOM’s in the previous paragraph. This time the input
space is set to be the map of solar gain itself which can be represented by an n-dimensional vector. The dimension of the
vector varies according to the size of the mesh and the correspondent number of vertices. It is immediate to think that the
network, which the input vector would train, can be represented by a 3D grid of nodes describing the volume of one of the
individual (fig2, black dots at right side). The initial value for the weights of the nodes (in this case vector of RGB colours) is
set to be RGB(0,0,0) which represents the black colour.

In order to map the input vectors into clusters that can be related to an architectural program | divided the input space in 4
main sub-spaces according to the required amount of daylight:

- residential
- office

- retail

- service

Fig3 and fig4 shows the clusters produced by the SOM after 62 iterations when the learning parameters are very close to 0
which means that convergence has been achieved.

Although residential and office are the areas that require more daylight the allocation of the first one is preferred to higher
position for ensuring good view. The allocation of retail area cannot go above a certain height as shown in fig3 (right side),
where the cluster related to this sub-space, positions itself at the bottom of the building. Service cluster goes through the
whole shape and position itself close to the north face of the building for creating a thermal buffer during the winter (fig4,
right side). Service is the area that should house structural core and service core. Figl shows residentil,office and service
cluster for a section taken at the top side of the residential cluster.

The clusters shown in the images are the result of a negotiation between the ability of the network to cluster the input
features (solar gain map) into relations and the constraints given by the encoded architectural program.

Although the procedure works properly, it is worth saying that we are at first early steps for the development of this tech-
nique. The architectural program that can been encoded is still very simple due to the difficulty of the process. Further
investigations needs to be undertaken for deploying the potentiality of such a sophisticated way of reading the space.

Figl section taken at the top side of the residential cluster

solar gain map

Fig2
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Conclusions

In the previous pages are shown some of results from different experiments where the criteria of selection are mainly based
on the performance of the individuals. The configuration shown in the images are the most performing ones amongst the
most performing generations. Applying this criteria for any other next experiment might seam at first sight a reasonable
choice. However it is the case of analysing further more what are the possible options focussing on the repercussions that
our proposed methodology has on the design process.

Consideration should be given to the main purpose of this work. It aims at providing a decision support environment, by
means of artificial intelligence techniques, for the integration of several performance evaluation tools. This allows the
utilization of analysis tools at a conceptual level for generating forms rather than evaluating them “post-facto” [1][6]. For
the way the whole procedure has been designed the evolution does not concern one individual at time but an entire set
of them, the populations. Evolving populations implies that the final outcome is made by set of solutions rather than one,
which something that matches our expectations. The final outcome is, indeed, a set of possible configurations that can
be used for having different proposals, sharing same topology and performing behaviour, but having relatively different
traits. From this point of view the choice that we made, when presenting the results in previous pages, of taking the most
performing individual of the most performing generation seams very restrictive rather than reasonable. Having said that,
several questions arise regarding the criteria of selection that one should take into account when facing an entire set of
possible configuration that result from the procedure. How can we navigate such a variety of configurations ? What kind of
functional/aesthetic sensibility a designer should develop for orienting his choice ?

If order to rationalise this problem we can start making two steps for orienting ourselves :

- navigate trough generations
- changing the scale of observation

The first step arises from the observation that most of the times there are some individuals that, although do not belong
to the final generation, are particularly performing. In the overwhelming majority of cases the final generation does not
present the most performing individuals but has the most heterogeneous environment. The first thing that come to mind is
to automatically search through the generations for the most performing individual giving a threshold related to its fitness.
For instance if we are interested in investigating the performance of the individuals regarding a certain fitness parameter,
not necessarily focussing on the total fitness, we can select the most performing one and all the other individuals whose
qualities are within a certain distance. In this way we deploy the possibilities offered by such a method and use all the his-
tory that has been created generation over generation.

The size of this range, that serves as a filter for choosing different configurations, depends on the available recourses that
one has in terms of time and memory. In any case, after doing such a filtering, we end in having a relatively small set of pos-
sible configurations that can be further analysed.

If we think at the way we have looked at the results , it is clearly evident that the scale of observation has been set to a
very low level. We have monitored their performances on the base of the analysis done over the course of the evolution
for generating them. However, in order to proceed with the analysis, we need to change the scale of observation to a
higher resolution. This entails the addition of another layer of complexity whereby the chosen individuals are subjected to
a detailed evaluation of their characteristics. For doing this, in a reasonable amount of time, we have to make this process
automatic writing another piece of code whereby the chosen individuals are selected and analysed using the available com-
mercial performance based evaluation tools. This time we do not work with them for generating morphologies but rather
for an accurate evaluation of their behaviours on three levels. The first one is to make an evaluation, using high resolution
tools, for the criteria that have not been taken into account in our procedure such as structural behaviour, lighting, circula-
tion, fire safety etc. The second one, is to validate the criteria encoded in our procedure by means of the correspondent
high resolution instruments to the ones that we developed over the course of this research. It is worth remembering that
simulations, such as the analysis of the exposure to sun and to wind, are mainly based on our cutting edge developed tools
and do not take into account higher order phenomena such as turbulence or thermal transmission. As already said above,
the development of those tools has been necessary for their utilization at a conceptual level due to the enormous amount
of simulations to be performed. The third level consist in an aesthetic evaluation of the chosen configurations amongst
which there might be several of those that do not match the sensibility of the designer.

In this way we create the logic link between the outcome of our proposed methodology and its possible utilization in an
architectural context. It is worth saying that this body of work has never aimed at creating a process that can deliver the
final product for a design. The key principle has been to provide an exhaustive exploration and a first rough selection of all
possible combinations of variables belonging to the examined topology, which would not be possible to consider with a
traditional approach.

final outcome

!
1 1
1 1
evaluate criteria for selection evaluate size of selection
: |
L e e e e e e e e e e - - e I -
1
navigate trough generations
1
1
F-——-------=-==- e i e A
1 1 1 1
1 1 1 1
configuration 1 configuration 2 configuration3 | | configuration n
1 ] 1 1
1 1 1 1
b e e e m oo N e J

high resolution for not
encoded design criteria

high resolution for validating
encoded design criteria

design brief
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Outlook

The project has opened up many directions for future work. It has demonstrated how the abstract representation of spatial
configurations can be related to real design constraints, under whose influence, they take shape. The experiments can be
considered as the unfolding of the design system. The first is a crude application of an evolutionary algorithm that reveals
the core of the system. The second one shows how a spatial configuration, represented by an amorphous surface, can take
shape under the action of a simple criteria, equilibrium. Due to the constraints imposed by the structure of the develop-
mental process and the relatively small size of the solution domain, the results delivered by such a system reach the poten-
tial of a possible design brief. The third experiment is where the system showed its virtuosity allowing to tackle problems
with n-indipendent variable by simply varying an array of numbers, the weights. Form-finding, a term that could be easily
associated to the patient work of the system which, instructed by design criteria, iteratively searches into the solution do-
main for deriving a set of optimum spatial layouts. We could say that the generated configurations, over generations of at-
tempts, become expression and virtual representation of the design criteria. However, due to the vastness of the searched
space and to the not yet fully understood interrelations between the design criteria, the delivered results have not reached
the realm of a design brief.

With regard to the future development of this work there are three main shortcoming that have to be highlighted:

- the generative system that controls the making of the “genome” needs to be further developed. At a conceptual level
it is possible to add another layer of complexity that serves as a controller for the management of the genome over the
evolution. Inspiring idea come from the newly developed “Evo-Devo” evolutionary developmental biology and the compu-
tational scheme developed for Genetic Programming [18].

The generative system mainly used in this research , although limited, presents the big advantage of being usable at a very
general level. It is worth saying that the procedure could also serve for improving an already semi-developed architectural
design by exploring possible variation of it, within the size of its solution domain, and under the pressure of its design con-
straints.

- with regard to performance-evaluation tools, it must be said that time and resources should be invested for the develop-
ment of their light-weight or “low-resolution” version, in order to be used at the conceptual level in the architectural design
process. The tools that | developed in this research, mainly based on vectorial calculus, although not as accurate as Ecotect
(sun analysis) or Ansys (CFD) , serve the function they were developed for. Their further improvements will lead to more
efficient evaluation and , therefore, development of the generated configurations.

- the absence of any link with the material system. This issue can be tackled by designing a light-weight structural analysis
tool based on FEM or Dynamic Relaxation. Embedding it in the algorithm will open the way for introducing the evaluation
of intensive quantities such as distribution of stresses or the energy of deformation which can be used as design criteria in
order to explore the solution domain while developing a meaningful structural system at the same time.

The repercussion of the proposed approach to design is a radical shift from the way in which design is conceived. Rather
than designing forms directly, we design the abstract representation of them, operating with the qualitative measurement
of their behaviours under certain design constraints instead that basing the design process on metric measurements [7]

[3].
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Appendix A : the code

M -1 o Ak W M

Option Explicit

'Soript written by <gennaro Ssenatorer
'Soript copyrighted by <genharo senatore:
'Soript wersion 05 Zeptewber 2008 01:02:41

Public gene length

Publie words

Public word length

Public max_ pop

Public maxgens

Public nuwberof sections

Public nuwhberof pointsper Section
Public scale noise factor

Public wf

Public max footprint area

Public min footprint area

Public max wvolume

Public min wvolume

Public max height

Public max facade area

Public min facade area

Public max wvolume centroid height
Public min volume centroid height
Public min curv radius limit
Public max curv limit

Public ¥V over Facade Areas max
Public ¥V owver Facade Area min
Public ¥V owver Footprint Ares max
Public ¥V owver Footprint Ares min
FPublic Facade to Floors ratio max

Public wl, w2, w3, wd, wh, wo, w7, wd
Public min wvalue
Public min waluse height

wmin wvaluse height=30

min walus=30

max footprint ares=12453

wmin footprint ares=i323

wmax volume=4135916

wmin wvolume=445554

max height=315

max facade ares=1Z4614

wmin facade ares=28257

wmax wolume centroid height=219
wmin wvolwme centroid height=60
wmin curv radius limic=0.01
max_curv_limit=1£min_curv_radius_limit

H_Dver_Facade_Area_max=max_vulumefmin_facade_area
H_Dver_Facade_Area_min=min_vulumefmax_facade_area
H_Dver_FDDtprint_area_max=max_vulumefmin_fnutprint_area
H_Dver_FDDtprint_area_min=min_vulumefmax_fnutprint_area
Facade to Floors ratio max=1

nunbercf sections=a

nunberof pointaper Section=12

words = nunberof pointsper Section+ (l+nurbercf pointsper Section] ¥ (numbercf sections-1)
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G4 word length = & 1277 Dim population wind fitness()

65 gene length = words*word length 1258 Relim population wind fitness (max_pop)

66| max_pop = 30 129 Dim population floors tot_areal)

a7 wi=1.2 'width scale factor 130 Relim population floors tot_area(max_pop)

65 131 Dim panels bodyi)

1= rrrrrrrrrnnt geights fic ratigtttrrrrrrrrrrrrnrnnnnn 132 Relim panels body (max_pop)

70 133 Dim panels capl()

71 wl=2 'V _over FA4 154 Relim panels cap (max_pop)

T we =2 'V _ower F 135

73 w3i=5 '"Heightof Centroid 136

74 wd=0.,5 'min curv_ radius 137 Dim Vol over Facade()

75 ws=10 'solar gain 135 Relim Vol ower Facade (max_pop)

76 we=10 'wind exposure 139 Dim wol over Footprint(]

77 w7=0 'FA R 140 Relim wol ower Footprint (max_pop)

75 141 Dim HeightCentroid()

79 Pt b get mutation rate! 't rnd 142 Relim HeightCentroid (max pop)

S0 143 Dim Facade to Floors Ratiol)

g1 Public mutation rate 144 Relim Facade to Floors Ratio(mwax_pop)

(= Pulhlic mwutation div 145

g3 mutation rate = 0.1 146 Dim mum, dad, neuwrnin, newdad

54 Public operator 147 Dim generation

85 Public mutation sens factor 145 Dim sumfitnessi)

86| mutation sens factor=0.5 149 Dim popfitnessi)

a7 150 Relim popfitness (max _pop)

(=1=] trrrrrrrrrrrrrttitgind ghalysigtrrrrrrrrrrnnna 151 Dim oldpop fitness|)

g9 ! Jource wectors =) -0.,.7071,-0,7071,0 152 Relim oldpop fitness(wax pop)

=]n| ! w -1,0,0 153 Dim pop_genome (]

91 Public wind wvelocity 154 Dim oldpop_genome ()

=) Public air density 155 Relim pop genome (max_pop)

93 Public dynamic pressure 156 Relim oldpop genome (max_pop)

o4 157 Dim wvaluesi)

o5 wind velocity=30 155 Belim wvalues (words)

=] alr density=1.25 159 Dim startpoint

97| dynsmic pressure= (air density*wind velocity*2) /2 1a0 Dim =eed

og B e 161 Dim 1,3,k

99 162

100 163 Dim Vol over Facade mean()

101 Call Maini) 164 Dim wol over Footprint mean()

10z Sub Maini) 165 Dim HeightCentroid mean|)

103 166 Dim min curv radius mean()

104 167 Dim zolar gain mean()

105 Dim populationi) 1las Dim wind fitnesz mean|)

106 Relim populationmax_pop) 1a9 Dim Facade to Floors Ratio mean|)

107 Dim population temp(] 170

1|:|8 REDlmprulatantEIﬂpl:maxI:IDI:I:I 1'?1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIISDlaranal?SiSinputSIIIIIIIII
109 Lim pupulatiun_szatei] B 172 Dim source westors sun()

110 Relim population State (max_pop) 173 Relim source wvectors Sun(6)

111 Dim population volumes/() 174 Dim source _wectors sSun mean(2)

11z Felim population wvolume (max pop) 175

113 Dim population footprinti() 176 'London

114 Felim population footprint (max pop) 177

115 Dim population vol centroidi() 175 'Latitude 51 degree 30 minutes ) zeconds
116 Belim population vol centroidmax_pop) 179 'Longitude a degree & minutes 59.76 =zeconds=
117 Dim population height () 130 ! 21zt december

115 Felim population height (max pop) 151 ! time 0O7:00 0.35844,-0.439, -0, 15587
119 Dim population capi() 152 ! Lime 9:00 0.6546,-0.7593,0.0961
120 Felim population cap(max _pop) 153 ! time 10:00 0.4525,-0.8722,0.1859
121 Dim population min curv_radiusi) 154 ! time 11:00 0.2305,-0.9425,0.24138
122 Belim population min curv radius max_pop) 135 ! Lime 12:00 -0.0072,-0.9655,0.2601
123 Dim population facads areal) 156 ! time 13:00 —-0.2443,-0.9394,0.2395
124 Relim population facads areaimax pop) 157 ! Lime 14:00 -0.4649, -0.5666,0.1514
125 Dim population solar gainf() 155 ! time 15:00 -0, &6537,-0.7514,0.05898
126 Relim population sSolar gain(max pop) 159 ! time 1a:00 -0.79581,-0.6013,-0.0z292




120
191
192
193
194
195
196
197
195
199
200
201
202
203
204
205
206
207
205
209
210
211
21z
213
214
215
21la
217
215
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
24z
243
244
245
246
247
245
249
250
251
252

! timwe 17:00 -0.8881,-0.4282,-0,1673
! timwe 18:00 -0.9176,-0.2422,-0,3152
! Source wectors 21l=t june

! timwe O7:00 0.8882,0.0669,0,4546

! time 0O9:00 0.68539,-0.2564,0.7115

! time 0O5:00 0.79582,-0.1065,0.5925
! time 10:00 0.4e85,-0.3717,0.8035
! time 10:30 0.3575,-0.4139,0.8371
! time 12:00 0.00%3,-0.4707,0.85823
! time 13:00 -0.25304,-0.494477,0.564
! time 16:00 -0.791,-0.1167%7,0.6006
! time 17:00 -0.8544,-0.0559,0.4633
! time 15:00 -0.917%6,0.2416,0.353157
! time 19:00 -0.85853,0.4276,0.1677
! time Z20:00 -0.7954,0.6014,0.02594

Source wvectors Sun|0)=array(0.6546,-0.7593,0.0961)
Source wectors Sunil)=array(0.4525,-0.8722,0.1859)
Source wectors Sunid)=array(0.2305,-0.9425,0.2418)
Source vectors Sunid) =array(-0.0072,-0.9655,0.2601)
Source vectors sSunid)=array(-0.2443,-0.95396,0.2355)
Source vectors Suni|5)=array(-0.4649,-0.83666,0.1514)
Source vectors Sunib) =array(-0.6537,-0.7514,0.0898)

Dim panels norm hody, pansls norm cap

Dim panels heat hodyi),panels heat capl)
""""""""'Iﬂ'indanal‘_i,?'sis inputslIIIIIIIIIIIIIIIIIIIIII
Dim source wectors wind()

Felim source wectors wind (0]

Dim source wectors wind mean (0]

Dim index

Source vectors wind(0)=array(1l,0,0]

index=0

Dim panels pressure body (], panels pressure cap ()
Dim cpe =a(7,12]

Dim cpe (7, 12]

Dim cpe o7, 12]

make cpe a cpe a

make cpe b cpe b

make cpe o cpe o

Dim mesh faces area body () .mesh faces area cap()
Dim a.b

a=arrav(0,0,0)

b=arravy(0,0,0)

Erase a

Erase b

rrrrrrrrrrrrrrrrrrrnrnd I‘t’IESh diViSiDn' rrrrrrrrrrrrrrrrrrrrnrnd
Dim num u hody, nun v body
Dim num u cap, hum v Ccap

num 1 hody=40
num v lody=40

num 1 cap=20

num v cap=10
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrnd
rhino.Compand "selall delete™

rhino.EnakbhleRedraw False

Dim camwerald)  target (2]

253
254
255
256
257
258
£59
Za0
261
Z2R2
2683
264
265
ZB6
267
2685
Z/9
270
271
272
273
274
275
276
277
275
279
Z80
281
282
283
284
285
286
287
285
289
£90
291
292
293
294
295
296
297
295
£299
300
301
30z
303
304
305
306
307
305
309
310
311
31z
313
314
315

Dim cameraheight,camera x rnd, camera vy rnd

IIIIIIIIIIIIIIIgEtmaxnmnherDfgeneratinnslIIIIIIIIIIIIIIII
seed=rhino.GetReal ("seed", 654)

maxgens=rhino.GetReal ("maxgeneration®, 5)

' rhino.comoand "fullscreen®

Belim sumfitness (maxgens)

Felim Wol over Facade mean maxgens)

Felim vol over Footprint mean (maxgens)
Felim HeightCentroid mean (maxgens)

Felim min curv radius mean | maxgens)

Felim solar gain mean (maxgens)

Felim wind fitness mean (maxgens)

Relim Facade to Floors Ratio mean (maxgens)

rond(-1]
RBandomize [(seed)
startpoint=array(0,0,0]

For i=1 To max pop
make pop genome (i)
Next

generation=1
For generation=1 To maxgens

rhino. AddText "generationigeneration,array |(startpoint (0)-300,startpoint (1)

Relim populationmax pop)

Belim population temp (max pop)

Felim population sState (max_pop)

Felim population wolume (max pop)

Felim population base areaimax pop)

Relim population heightofecentroid (max pop)
Felim population height (max pop)

Relim popfitness (max _pop)

Felim population cap (max pop)

Belim population min curv radiusimax pop)
Relim population facade areaimax pop)
Felim population solar gain(max pop)
Felim population wind fitness (max pop)
Relim population floors tot aresimax pop)
Belim Vol over Facade (max pop)

Relim vol over Footprint (max pop)

Felim HeightCentroid (max pop)

Relim Facade to Floors Ratioimax pop)
Relim panels body (max pop)

Relim panels cap (max pop)

sumfitness (generation) = 0O

i=1
For i=1 To max pop

popfitness (i) =0
population state(i)=True

e decoding the genome --------—-—-
decode pop genome (i), values
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316 startpoint (01 =startpoint (0)+1000 379 Relim panels pressure body (ubound (panels norm body) )

317 rhino. AddText "pop™&i,array(startpoint (0, startpoint (1)1-180, 380 Relim panels pressure_cap(ubound panels norm cap) |

318 startpoint (2)7,20,,0 h 3581

314 h 3ga bounding hox panels body (i),

320 shapemaking startpoint,values,population temp (i), 383 gource wvectors wind, a, b

321 population height (i), population state (i), generation 354 dot_wind panels_body(i), panels norm body

322 h B B 385 ;panels pressure body,

323 If population state(il=True Then 386 _Source_wectors wind,cpe_a,

324 - 387 cpe kb, cpe o, 8.b, index, generation

325 population (i) =population temp (i) (O] 388 dot_wind panels_cap (i), panels_norm cap,

326 B 389 panels pressure cap,

327 e —— evaluation-fitness function --———---——- 390 _Source_wectors wind,cpe a,

328 first selection population(i),population state (i), population volume (i) 351 cpe b,ocpe_o,a b, index, generation

329 ,population footprint (i) ,population vol centroidii) h 1=K

330 h B B N 393 get_mesh faces _area panels body, panels

331 If population state (i) =True Then 394 _ cap,mesh faces area body,

332 - 395 _mesh faces ares cap

333 cameraheight=rnd*8 396 get_wind fitness panels body (i), panels cap (1]

334 camera ¥ rnd=rnd®4 397 _ ;panels pressure body,

335 camera_g_rnd=rnd*5 398 _banels pressure_cap,

334 For j=E ?D a0 Step 1 3949 _ population wind fitness (i) ,generation

337 carmera (0] =startpoint (0) —camera x rnd*100+800% 400 get_wind force panels body, panels cap,

338 _ cos (2%)%rhino. P4i/180) T B 401 _banels pressure_body,

339 camera (1) =startpoint (1) —camera v rnd+100-1200 40z _panels pressure_cap, panels norm body,

340 _ *sin{j*rhino.Pi/180) o B 403 _ panels norm cap,

341 camera (2] —startpoint (2] +500%3in (j rhino.Pi/ 180) 404 _mesh_faces_area_body,mesh_faces_area_cap

342 Bhino.ViewCameraTarget ,camera,startpoint 405 _-hum_u body, nuam v_cap

343 MNext 406

344 407 Erase panels norm body

345 capsurf populationii),population cap (i) 408 Erase panels_norm cap

345 analysis population(i),population wvolume (i), 409 Erase panels_pressure_body

347 _ pupulatiun_facade_area(ij;pnpulatiDn:min_curv_radius(ij 410 Erase panels pressure_cap

345 411

349 L R R N T analysis""""" 41z Eraze a

350 tri facets population(i),panels body(i), panels norm body, 413 Erasze b

351 _ num 1 body, hum v _body, startpoint h h 114

352 415 rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr e
353 If panels bhody (i) <>False Then 416 'caloualte fitness

354 B 417

355 get floors panels body (i), startpoint, 418 fitnezs function popfitnessii),population volume (1)

356 population floors tot area(i) 419 ;population footprintii), _

357 Facade to Floors Ratio(i)=population facade area(i) (0) 420 _bopulation wol esentroid(i),_

350 Jpopulation floors tot areali) h h 421 _population heightii),

350 h B B B 422 _bopulation facade areali),

360 tri facets cap population cap(i),panels cap (i), 423 _bopulstion min curv_radius (i), _

361 panels norm cap,num U Cap, num v ocap B 424 _bopulation solar gainii), _

362 h B B - - 425 _bopulation wind fitness(i],

363 Relim panels heat body(ubound (panels norm body) ) 426 _Facade to Floors_Ratio(i] _

364 ReDim panels heat cap (ubound panels norm cap)) 327 ;1,generation

365 B B B B 428

366 dot_solar panels body (i), panels norm body, panels heat body, 429 Vol over Facade (i) =population woluwe (i) (0)/population facade area(i) (O]
367 _ sgurce_vectgrs_sun;generatiEn N - - - 430 vnl_uver_FDDtprintii]=pupulatiun_vulumeii]iD]fpupulatiun_fuutprintii]iD]
365 dot_solar panels cap (i), panels norm cap, panels heat cap, 431 HeightCentroidii)=population vol ecentroid(i] (2]

369 Source vectors sSun, generation h h h 432

370 B B B 433 rhino. AddText "Fitness="LC3tr (popfitness(i)),

371 get_sun solar gain panels heat body, panels heat cap, 434 _array(startpoint (0] ,startpoint (1) -250, startpoint (2)],20,,0
a7z _population solar gaiﬂ(ij B B N N 435 rhino. AddText "Facade to Floors Ratio="iCStr (Facade to Floors Ratio(i) ),
373 B B 436 _array(startpoint (0] ,startpoint (1] -300, startpointi) ), 20,0
374 Erase panels heat body 437 rhino. LddText "Wind Fitness="iC3tr (population wind fitness (1)),
375 Erase panels heat_cap 4385 _array(startpoint (0] ,startpoint (1) -300,startpoint (2)],20,,0
376 B B S

3'?'? rrrrriruni lend anal?slﬂ' rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrl 44':' Else

378 441 popfitnez= (i) =0
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442 rhino. AddText "wrong solution”, array(startpoint (0], 505 e natural selection Goldbery roulette ——————————
443 _startpnint(l]—ZDD,startpDint(ZJ],ZD,,l 506G For i = 1 To max pop - 1 Step 2

344 End If 507 B

445 508 mum = roulette (sumfitness (generation),oldpop fitness)
446 Else 509 dad = roulette (sumfitness (generation),oldpop fitness)
447 popfitnes=siil =0 510

445 rhino. AddText "wrong solution”, array(startpoint (0], i1 b CrOSSOVEE ——————————

449 _ startpointi(l) -200,startpoint (2) ) ,20,,1 51z

450 End If 513 crossoverSplice oldpop genome (muaw) , oldpop genome (dad)
451 514 ; bop_genomwe (i), pop genome (i + 1)

452 Else 515 B B

453 popfitnessii) =0 Gil6 e —— mutation ------————————-—

454 rhino. AddText Turong snlutinn",arrag(startpuint(D],_ 517

455 _ startpoint (1) -Z00,startpoint (2] ) 20,1 518 If Bnd > mutation rate Then

456 End If 519 mutate pop genome (i)

457 520 mutate pop gencme (i + 1)

458 sumfitnessigeneration) =sumfitness (generation) +popfitnez=(i) 521 End If B

4549 Ezz2

4 &0 Dldpnp_genume(i]=pnp_gennme(i] 523 Next

46l oldpop fitness (i) =popfitness (i) 524

462 EZ25 End If

463 EZa

4 64 If [(generation<maxgens) Then 527 For j=0 To max pop®l0

465 528 B

166 If isempty(population(i)|=False Then 5Ez9 camera (0] =startpoint (0) +300-80%3

467 If isnull (population(i))=Fal=se Then B30 camera(l)=startpoint (1)-1000

465 rhino.DeleteCbhject population(i) 31 camera () =startpoint (&) +300

459 End If B3z target (0) =800

470 End If 533 target (1) =startpoint (1)

471 534 target (2)=startpoint (2]

472 If izempty(population cap(i))=False Then 535 Fhino.ViewCameraTarget ,camera, target

473 If iznull (population cap(i) | =False Then 535

474 rhino.DeleteChject pnpulatinn_cap(i] 537 Next

475 End If 535

476 End If 539 startpoint (0) =0

477 540 startpoint (1) =startpoint (1) -1300

475 End If 541

479 542 Yol over Facade mean(generation)=mean(Vol over Facade]

450 Next 543 vnl_nver_FDDtprint_mean(generatinn]=mean(vnl_nver_FDDtprint]
451 544 Facade to Floors Ratio mean(generation]=mean (Facade to Floors Ratio)
432 If generation < maxgens Then 545 HEightEEﬂErDid_mean(generatinnj=mean(HeightCentrDid]

453 i=1 546 min curv radius mean(generation) =mean(population min curv_radius)
454 547 solar gain mean(generation] =meanpopulation solar gain)

455 prerrrrrrririrrrritt ger mutation rate! ttrrrrrorrrirnrinr 548 wind fitness mean (generation) =mean (population wind fitness)
486 If generation>1 Then 540 - - B

457 550 rhino.Print "gen="&£C3tr (generation) £ gen fitness="iCRtrisuwfitness (generation))
458 If sumfitness (generation) *auwmfitness (generation-1) Then EE1 rhino.print "mutation rate="s£C03tr (mutation rate)

459 matation div=sumfitness (generation] 552 B B

490 operator=1 553 Next

491 El=e 554

492 matation div=sumfitness (generation-1) EEE excel output sumfitness, Vol over Facade mean,vol over Footprint mean,
493 operator=-1 55a Facade to Floors Ratio mean, _HeightCentroid mean,

494 End If 557 h min curv radius mean, solar gain mean, wind fitness mean
495 558 Tmutatign raEE;wnrdg;scale noise factor

406 mutatiDn_rate=mutatiDn_rate+DperatDr*_ 55O N N B B

497 _ [(shs(suwfitness (generation) —suwfitness (generation-1) ) G50 rhino.EnableRedraw True

495 _Imutatiun_div]*mutatinn_sens_factnr CEl

4499 Ee2 End Sub

soo If matation raterx1l Then mutation rate=1 563

501 If matation rate<0 Then mutation rate=0 EEd|[H 3ub make (EvRef genome)

50z E&5

503 End If EEE Diim jJ

sS04 L= genome = "
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S5ag
585
570
571
572
573
574
575
576
577
578
5749
580
551
582
583
554
585
556
5587
555
555
590
591
59z
593
5594
585
594
597
595
5949
00
601
602
603
604
605
606G
607
605
605
610
611
a1z
613
614
615
6l
617
615
615
g20
621
BZZ
BZ3
6Z4
625
BZ 6
B27
G625
G289
630

End

Zub

End

For 3 = 1 To gene length
If Fnd < 0.5 Then

genome = genome + F1F
Else
genome = genome + FOF
End If
Next
Sl

decode (ByRef genome, ByFef walues())
Dim temp , pos , endpos

Dim i, j

Dim stringvalue

For i = 1 To words
temp = 0O
endpos = i % word length

'"work backwards through string
For 3 = 0 To word length-1
pos = endpos - ]

stringvalue= Mid(genome, pos, 1)

If stringwalue = 1" Then
temp = temp + 2 * jJ
End If
MNext
'set a minimun value for the dimension of the domwain
If temp <min value Then temp = min value
wvalues (i)l = temp
MNext
Sl

Function random(lower , upper |

End

End

Zub

random = Int | (upper - lower + 1) * Rnd + lower)
Function

———— pgcrossover splice chooses a random split point in the genes and swaps the
——— two over a b , cd>ad, ch

crossoverlplice (ByFef mum , ByRef dad, ByRef newmum , ByRef newdad |

Dim start

start = random(l, gene length - 1)

newrnan = Left (mam, start] + Mid(dad, start + 1)
newdad = Left (dad, start] + Mid(mum, start + 1)
Sl

mwutate (ByRef genome)

Dim pos
Dim stringvalue

pos = randomi(l, Len(genome))
stringvalue=Mid (genome, pos, 1)

If stringwalue = O Then

631
B3z
B33
634
635
636
637
635
639
540
641
[ )
643
644
645
616
547
545
549
650
651
652
653
654
655
656
657
655
659
G6&0
66l
b6z
663
664
665
BE6
BE7
Ba5
(3=
670
671
672
873
674
675
676
577
67a
57
650
651
652
653
654
655
656
6587
655
659
550
691
692
593

End

genome=left (genome, pos-11+"1"4+Mid (genome, pos+1)
Else

genome=left (genome, pos-1) +"0"+Mid (genome, pos+1)
End If

Sub

Function roulette (ByRef suwmfitness, ByRef oldpop fitness())

End

Sub

' select a single indiwvidual wvia weighted roulette wheel selection

Iim treshold , partsum , ]

partsum = 0
j=a0
treshold = BEnd * sumfitness
Do
ij=31+1
partsum = partsum + oldpop fitness(j)
Loop Until | (partsum > treshold) Or (] = max_pop)|
roulette = j

Function

shapefinding [(ByRef startpointi),ByRef wvalues(),ByRef individual temp,height,
ByRef indiwvidual state,ByVal generation)

Dim 1,3

Dim arrpoints coor ()

Felim arrpoints coor (numberof pointsper section]
Dim arrpoints|()

Dim sectionsi)

Felim sections (numberof sections-1)

Dim k:k=1

Dim previous height

Dim check

check=True
j=o

initialise firstorlast section startpoint,arrpoints coor,
_ values, k, previous _height, sections, j
kE=l+numberof pointsper section

For j=1 To numberof sections-2

initialise startpoint, arrpoints coor, values,
_ k,previous _height,sections, J
k=k+l+numberof pointsper section

Next

initialise firstorlast section startpoint,arrpoints coor,
_ values, k, previous _height, sections, j
k=k+l+numberof pointsper section

For j=0 To ubound(sections)
If isnull (sectionsi(]j))=True Then check=False
If isemptyisections(]j) 1 =True Then check=False
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654
655
=]
697
=ls]
=l=]
oo
TO1
TOZ
TO3
TO4
TO5
TO&
TaT
705
Tas
710
711
71z
T13
714
715
Tl
717
715
719
TE0
TE1
TZE
TZ3
TZ4
TEZ5
TZ6E
TET
TZG
TS
T30
T3l
TIE
T35
T34
T35
736G
73T
T35
T3
740
741
T4z
743
744
745
746
a7
745
745
750
751
752
753
754
755
756

End

Sub

Next

If check=True Then
individual temp=Rhino.AddLoft3rf (sections,,,0,1,10)
height=previous height

If generation<maxgens Then
rhino.DeleteChijects sections
End If

El=ze
individual_state=False
End If

Sub

initialise firstorlast sSection (ByRef startpoint (],
EyFef arrpoints coori),EByRef wvalues ()
;ByRef k,EyRef previous height,ByRef sections,EyWal who)

Dim relative center
Dim points

Dim 1

Dim alfa,radius

If k=1 Then

relative center=array(startpoint (0], startpoint (1) ,startpoint 2]

prrevious height=relative center (2]
El=ze

relative center=array(startpoint (0], startpoint (1),
_ startpoint (2] +previous height+values (k||
If walues (k) <min value height Then
relative center (Z)=relative center (Z]+min value height
End If
prrevious height=relative center (2]
End If

If k=1 Then

For i=0 To wbhound (arrpoints ecoor)-1
alfa= (rhino.Pi*360/ (ubound (arrpoints coor)) )/ 180
radius=values (k+i)
arrpoints coor (i) =array(relative center (0] +cos(alfa*i) ‘radius v,
relative center (1) +sinialfa®i) *radius*vwf, relative center (2] ]
Next

El=ze

For i=0 To wbhound (arrpoints ecoor)-1
alfa= (rhino.Pi*360/ (ubound (arrpoints coor)) )/ 180
radius=values (k+1+1i)
arrpoints coor (i) =array(relative center (0] +cos(alfa*i) ‘radius v,
relative center (1) +sinialfa®i) *radius*vwf, relative center (2] ]
Next

End If

=
755
759
Tad
Tal
ThZ
Ta3
Tad
a5
ThE
TaT
TaS
a9
Farn
et
ary-
ar]
s
e
s
e
=
ares
Fa=1u)
TE1
=y
783
T84
P85
=1
L=
1=
Fa=1=
90
791
TOZ
T3
=k
795
=l
=i
P95
a=ls
300
g01
g0z
g03
S04
805
g06
807
305
809
810
g11
g1z
g13
g14
815
gl6
817
815
819

End

Sul

End

Sul

'pointa=rhino. lddPointCloud [arrpoints coor)

arrpoints coor (ubound (arrpoints coor) | =arrpoints coor (0]
gections (who]=rhino. AiddInterpCurve [(arrpoints coor,3,3)
rhino.faircurve sections iwho) 1

Subk

initialize (ByRef startpoint (], ByRef arrpoints coor (] ByRef walues ()  ByRef k,
EvFef prewvious height, ByRef sections, ByVal who)

Dim relative center
Dim points

Dim i

Dim alfa, radius

relative center=array(startpoint (0], Startpoint (1],
Startpoint (2] +previous height+walues (k)|

If walues (k) <min walus height Then
relative center (Z)=relative center (2] +min wvalus height
End If

previous height=relative center (2]

For i=0 To whound(arrpoints coor) -1
alfa=irhino.Pi*360/ (ubound (arrpoints coor))) /180
radius=values (k+1+1)
arrpoints coor (i) =array(relative center 0]+

_ cos (alfa®i) *radius*wL, relative center (1]
_ +2in(alfa*i) fradius“wf, relative center (2] ]
Iext

'pointa=rhino. lddPointCloud [arrpoints coor)
arrpoints coor (ubound (arrpoints coor) | =arrpoints coor (0]
gections (who]=rhino. AiddInterpCurve [(arrpoints coor,3,3)

rhino.faircurve sections iwho) 1

Sul

first selection (ByRef indiwvidusal,EByRef indiwvidusl state,ByRef indiwvidusl wvolums,
_ EvFef individual footprint,ByRef individual wol centroid)

Dim indiwviduzl tep

Dim indiwvidual temp explode

Dim wol centroid

Dim bhase centroid temp

Dim wol centroid projection
Dim checkl,check:z

Dim i

"indiwvidusal temp=rhino.CopyCbhject (individusl)
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gz0
821
gZZ
gZ3
gZ4
825
gZ6
827
825
gZ9
830
831
8932
833
834
835
836
837
835
839
g40
g41
g4z
543
544
345
g46
G547
g45
349
850
851
852
853
354
855
856
857
855
859
ga0
861
g6z
g63
=1
865
g66
=1
g65
=13=
870
871
872
873
374
875
876
877
875
879
880
881
g82

End

Sub

checkl= rhino.CapPlanarHoles (indiwvidual)

wol centroid=rhino.3urfaceVoluweCentroid (individual)

If iznull (vol centroid)=False Then
individual wolume=rhino.3urfaceVolumes (individual)
wol centroid projection=array(vol centroid(0) (0) ,vol centroidiO) (1) ,0]
individual wol centroid=array(vol centroid(0) (0] ,vol centroid(0) (1) ,vol centro

'rhino. iddPoint vol centroid projection

individual temp explode=rhino.ExplodePolysurfaces (individual, True)
individual footprint=rhino.3urfaceirea(individual temp explodeil]]
checki=rhino.IzPointOn3urface (individual temp explode(l) ,vol centroid projecti

! For i=0 To vhound({individual temp explode]
! rhino.beleteChject individual temp explode (i)
! MNe=xt

End If

If checkl=False Or isnull (checkl)=Trus Or checkZ=False Or _
_ isnull icheckzZ ) =True Or isnullivol centroid)=Truse Then
individual state=False

End If

! rhino.beleteChject individual temp
! rhino.ZelectChject individual temp explode (2)
If izarrayiindividual temp explode)=Trus Then

individual=individual temp explode (2]
rhino.DbeleteCbhbject individual temp explode (0]
rhino.DbeleteCbhbject individual temp explode (1)

! rhino.3electChject individual
El=se

individual state=False
End If

Sub

capsurf | ByRef individual temp,pop cap)
Dim startcurve

Dim curve

Dim curve domain

Dim arrpointsl ()
Felim arrpointsl (0]
Dim arrpointsd (]
Felim arrpoints2 (0]

Dim i,k
Dim t_step

Dim idisocurvesu, idisocurwveu
Dim id isocurweswvl,id isocurveswa

Dim id isocurwvewl
Felim id isocurwvewl (0]

Dim id isocurwvewZ (]

883
S84
885
(=1=1
887
(=1=1=1
889
390
891
g9z
893
894
895
896
(=1=
895
899
900
901
90z
903
S04
905
S0a&
907
905
909
910
911
91z
913
914
915
91a
917
915
919
9z0
9z1
9zz
923
9z 4
9z5
9z
9z7
9z5
9z9
930
931
93z
933
934
935
936
937
935
939
940
941
94z
943
944
945

Felim id isocurvewvi (0]
Dim cap

! startcurve=rhino.Duplicateiurfaceborder (individual temp]
startcurve=rhino.DuplicateEdgeCurves (individual temp)

curve=startcurwve (0]

! rhino.3electlbject curve

curve domain=rhino.Curvelomainicurve)

If curve domain(0) <0 Or curve domain(l)-< (0] Then
rhino.ReverseCurve curve
curve domain=rhino.Curvelomainicurve)

End If

t_step=(curve_dnmain(l]—curve_dnmain(ﬂ]JHQD
For t£=0 To curve_dnmain(l]fz dtep t_step

arrpoint=slii)=rhino.Evaluatelurve (curve ,t]
arrpointsZ (i) =rhino.EvaluateCurve (curve, curve domain(l) -t

! rhino. AddFPoint arrpointsl (i)

! rhino. AddFPoint arrpointsZ2 (1)

'rhino.AddLine arrpointsl(i),arrpointsz2 (i)
Belim Preserwve arrpointsl (ubound arrpointsl)+1)
Belim Preserwve arrpoints2 (ubound arrpoints2)+1)

i=i+1
Next

Belim Preserwve arrpointsl (uboundarrpointsl)-1)
Belim Preserwve arrpoints2 (ubound arrpoints2)-1)

Dim trimcurwvel
Dim trimcurwve?l

trimcurvel= Ehino.TrimCurve

jcurve,array (curve domainil)-t step,curve domainil]+t step),False]
trimcurveZ= Ehino.TrimCurwve
_(curVE;arrag(curve_dnmain(l]fz—t_step;curve_dnmain(l]32+t_step];Falsej

rhino.ReverseCurve trimcurvel

'rhino.Dbeletelbhject curve
rhino.Dbeletelbjects startcurve

Iim surfparamsl|)
Belim surfparamsl (ubound arrpointsl) )
Dim surfparams2 (]
Belim surfparams2 (ubound (arrpoints2) )

For i=0 To ubound (arrpointsl)
surfparamsl (i) =rhino.3urfaceClosestPoint (individual temp,arrpointsl(i]]
surfparams (i) =rhino.3urfaceClosestPoint (individual temp,arrpointsZ (i)
Next

For i=0 To ubound(surfparamsl)

id isocurvesvl= rhino.ExtractlIsoCurve
findividual temp,array(0,surfparamsl (i) (1)) ,.0)]
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945
947
945
949
950
951
a5z
953
954
955
958
957
955
959
Sa0
951
Sz
963
Sad
985
966
9a7
9685
Sa9
970
971
97z
973
974
975
97 a
77
975
979
980
951
95z
983
954
985
986
987
985
9589
9390
9391
99z
993
994
995
996
997
995
999
1000
1001
100z
10035
1004
1005
1006
1007
1005

id isocurvesvi=rhino.ExtractIsoCurve
findividual temp,array(0,surfparamsz (i) (1)) ,0]

id isocurvevl(i]=id isocurvesvl (0]
id isocurvevi (i) =id isocurvesvi (0]

Belim Preserwve id isocurvevliubound(id isocurvewvl)+1)
Belim Preserwve id isocurvevi jubound(id isocurvevi]+1)

Next

Belim Preserwve id isocurvevliubound(id isocurvewvl)-1)
Belim Preserwve id isocurvewvi jubound(id isocurvevi)-1)

Dim curvesl domain

Dim curvesi domain

Dim arrtangli)

Felim arrtangl (ubound(id isocurwvewvl))
Dim arrtangsd ()

Felim arrtangs (ubound (id isocurwvevi) |

For i=0 To ubound(id isocurwvewvl)

arrpointsl(i) = rhino.CurveEndPoint (id isocurvevlii]]
curvesl domain=rhino.Curvelomainiid isocurwvewl (i) ]
arrtangl (i) =rhino.CurveTangent (id isocurvewvl (i) ,curvesl domain(l))
! arrtangl (i) =rhino.VectorUnitize (arrtangli(i))
arrtangl (i) =rhino.Vector3cale (arrtangl (i) ,0.43)
Next

For i=0 To ubound(id isocurwvewvi)
arrpointsZ (i)= rhino.CurveEndPoint (id isocurvevi i)
curvesi domain=rhino.Curvelomainiid isocurvewi (i) ]
arrtangZ (i) =rhino.CurveTangent (id isocurvewvi (i) ,curvesi domain(l))
arrtangs (i) =rhino.VectorBReverse (arrtangd (1))
! arrtangs (i) =rhino.VectorUnitize (arrtangd (1))
arrtangs (i) =rhino.Vector3cale (arrtang2 (1) ,0.43)
Next

Dim loft curwve()
Belim loft curwve (ubound arrpointsl))

For i=1 To ubound(arrpointsl)
loft curve (i) =Rhino.iddInterpCurve
_larrayiarrpointsl (i) ,arrpoints2 (i)) 3,2, arrtangl (i) ,arrtang (1] ]
Next

rhino.Deletelbjects id isocurvevl
rhino.Deletelbjects id isocurvewvi

loft curve (0)=trimcurvel
loft curve (ubound(loft curve) | =trimcurvesl

cap=rhino.AddLoft3rf [loft curve,,.,3,1,10)
rhino.Deletelbjects loft curve

! get height cap(0),height
pop cap=cap (0]

End Sub

1009
1010
1011
1012
1013
1014
1015
1016
1017
10185
1015
10z0
1021
1022
1023
10Z4
10Z5
10Z6
10z
10zZ85
10z9
1030
1031
1032
1033
1034
1035
1036
1037
10385
1039
1040
1041
1042
1043
1044
1045
1046
1047
1045
1049
1050
1051
1052
1053
1054
1055
1056
1057
1055
1059
1060
1061
1062
1063
1064
1065
1066
1067
1065
1069
1070
1071

Sub get floors (ByWal panels hody,EyWal startpoint (), ByRef individual floors tot area)

Dim arrcontours

Dim 1

Dim contours

Dim mwesh floors_ares(] ,floor centroidi)

Dim endpoint:endpoint=arrayi(satartpoint (0] ,startpoint (1) ,startpoint (2)+500)

Dim w=zub () ,vortho() ,dot (] ,=wmn ()
Dim j

Dim kbase point

Dim wec_=

Dim sum_dot

weo z=array(0,0,1)

arrContours = Bhino.MeshContourPoints (panels bhody, startpoint, endpoint, 3)
Felim mesh floors_ares (ubound (Arrcontours) )

Felim floor centroid ubound (arrcontours] )

For j=0 To ubound/arrcontours)
Felim wvaub (ubound (arrcontoura (300
Felim wortho (ubound (arrcontours(J) 1)
Felim dot (ubound (arrcontours(J) 1]
Felim swm(ubound (arrcontours(J) 1)
Sum_dot=0

base point=array(startpoint (0] ,startpoint (1), arrcontours(j) (0) (2]

For i=0 To ubound arrcontourz(j))
waub (1] =rhino.Vector3ubtract (arrcontours(j) (i) base_point)
Iext

For i=0 To ubound arrcontourz(j))

wortho (1) =Fhino.VectorCrossProduct (vsub (1) ,wvec =)
Iext

For i=0 To ubound arrcontourz(j))
If i<ubound(vsub) Then
dot (1) =PFhino.VectorDotProduct (wvsub (i), wortho(i+1))
El=e
dot (1) =Fhino.VectorDotProduct (wvauk (i), wortho(0l)
End If
Iext

For i=0 To ubound arrcontourz(j))
Sum_dot=swumw_dot+dot (1)

Iext

mesh floors area(j)=suwwn_dot 0.5
_leDr_centrDidijJ=arrayihase_pnint(D]+SiD]£
mesh_flnurs_area(j],hase_pnint(1]+S(ljfmesh_fluurs_areaij],Sizjj
individual floors_tot_ares=individual floors tot_ares
_+imesh_flnurs_areaij]—mesh_flunrs_areaij]*EDEIDD]

Iext

End Sub

Sub analysis (ByVal individual,ByRef individual wolume,
EvFef indiwvidual facade ares, ByRef min curv radius)
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1072 Dim cap_wolume 1135 El=ze
1073 Dim indiwvidual curv_analysis 1136 mesh face wvertices counter-1)=-
1074 Dim cap_curv_analysis 1137 _ array (header, header+nuwn w+1, header+nun v, header+nuwm )
1075 Dim cap_ares 1133 mesh_face_vertices(cnunterj=_
1076 1139 array (header, header+1, header+num v+1, header+num v+1)
1077 individual facade ares=rhino.3urfacelres(individual) 1140 End If B
1078 individual curv_analysis=rhino. ZurfaceCurvaturelnalysis (individual] 1131
1079 min curv_radius=individual curv_analysisi(3) (0] 1147
1080 1143 Ne=xt
1081 | End 2ub 1144 Ne=xt
1082 1145
1083 Sub tri_facets (ByVal id surf, ByRef panels body, 1148 If isarray(mesh points)=True And isarray(mesh face vertices)=True Then
1054 _ EvFEef panels norm bodyi) ,num u, v, ByWal startpoint) 1147 B
1085 1148 panels hody= rhino. AddMesh (mesh points,mesh face vertices)
1086 1149 ranels norm hody = Fhino.MeshWVertexNormals (pansls hody)
1087 Dim doml, domy 1150 El=se
1088 Dim uMin, uMax, vHin, vHMax 1151 panels_bndy=False
1059 Dim ulIne, wIne 1152 End If
1090 1153
1091 dowl = Rhino.Surfacelomsiniid Surf, 0] 1154
1092 dowV = Rhino.Surfacelomsiniid Surf, 1) 1155 End Sub
1093 1156
1094 uMin = domwl (0] 1157 Sub tri facets cap (ByVal id surf cap,EByFef panels cap,
1095 uMax = domlil) 1158 EyFef panels norm cap (), mnunm u, num V)
1096 wMin = dowW (0] 1159 B
1097 wHax = domWVil) 1160 Dim doml, domV
1095 1161 Dim uMin, uMax, vMin, wvHax
1099 ulne = (uMax-uMin) /num u 1162 Dim ulnc, vInc
1100 vIine = (vMax-vMin) /num v 1163
1101 1164
1102 Dim i, j 1165 doml = Rhino.Surfacelomain(id surf cap, 0]
1103 Dim mesh _pointsi) 1166 dom¥ = Rhino.Surfacelomsain(id surf cap, 1)
1104 Eelim mesh_pnints[D] 1167
1105 Dim mesh face wertices|() 1168 uMin = doml(0)
1106 Dim counter:counter=0 1159 uMax = domll(1)
1107 1170 vwHMin = domW (0)
1108 1171 vHMax = domV (1)
1109 For i = uMin To uMax+uinc/2 ZItep ulnc 1172
1110 For j = wMin To vMax-vInc/Z Step vwIne 1173 ulnc = (uMax-uMin)/num u
1111 1174 wIine = [(vMax-vMNin) /man
1112 mesh points (counter) = RBhino.Evaluatedurface (id Zurf, Array(i, 7J)] 1175 B
1113 Felim Preserwve mesh points (ubound (mesh points) +1) 1176 Dim i, 3]
1114 counter=counter+1 1177 Dim mesh points cap!)
1115 1178 Felim mesh points cap (0]
1118 Mext 1179 Dim mesh face vertices cap|)
1117 1120 Dim counter:counter=0
1118 MNext 1181
1119 1182
1120 FEelim Preserwve mesh_pnints[ubnund[mesh_pnints]—1] 115853 For i = uMin To uMax+uinc/Z2 Ztep ulnc
1121 1154 For j = wMin To wMax+winc/Z Step winc
1122 Dim header 1185
1123 counter=-1 11586 mesh_pnints_cap(cDunterj= RhinD.EvaluatESurface(id_Surf_cap; Arrayi(i, 311
1124 For i=0 To num u 1187 Felim Preserve mesh points cap (uboundimesh points cap) +1)
1125 For j=0 To numn w-1 11585 counter=counter+1
1128 1189 Ne=xt
1127 header=i*[nunLv]+j 1120 ext
11285 Ccounter=counter+:2 1191
1128 Felim Preserwve mesh face wertices (counter) 1192 Relim Preserve mesh points cap (ubound (mesh points cap)-1)
1130 If j=numn v-1 Then 1193
1131 mesh face verticesicounter-1)=_ 1194 I'itn header
1132 _ array (header, header+1, header+nuwn v, header+num v 1195 counter=—-1
1133 mesh_face_vertices[cnunter]=_ 1196 For i=0 To num u
1154 _ arrayheader, header-num v+1, header+1, header+1] 1197 For j=0 TD_num_v—l
1198




1197
1195
1199
1200
1201
120z
1203
1204
1205
1208
1207
1208
1209
1210
1211
121z
1213
1214
1215
1216
1217
1215
1219
1220
1221
1222
1223
1224
1225
1226
1227
1225
1229
1230
1231
1232
1233
1234
1235
1236
1237
12385
1239
1240
1241
1242
1243
1244
1245
1246
1247
1245
1249
1250
1251
1252
1253
1254
1255
1258
1257
1255
1259

End

Sl

For 3=0 To num w-1

header=i% (num_w+1) +]
counter=counter+2
Felim Preserve mesh face vertices cap (counter)
mesh face wvertices cap (counter-1)=
array (header, header+num v+2 , header+num w+1, header+nuwn v+1)
mesh face wvertices cap (counter) =
array header, header+1, header+num v+2, header+num v+2)
Next
Next

panels cap=rhino.AddMesh (mesh points cap,mesh face vertices cap)
panels norm cap = Rhino.MeshVertexMNormals (panels cap)

For i=0 To ubound(panels norm cap)
panels norm cap (i) =rhino.VectorReverse (panels norm cap (i) )
Next

Sl

dot solar (ByWal panels, ByWal panels normi(),
_ByRef panels heat (] ,ByVal source vectors sun(),ByVWal generation)

Dim 1,73

Dim rgh walue

Dim red, green,blue
Dim incident angle

If generation=maxgens Then
Dim arrcolrsi)
Felim arrColors | Rhino.MeshVWertexCount (panels) -1 |

End If
For i = 0 To UBound (pansels norm)
For 3 = 0 To ubound(Source vectors sun)
incident angle =rhino.VectorbotProduct
(panels norm(i),Source vectors sun(j])
If (incident angle >= 0] Then
panels heat (i) = panels heat(i] + incident angle
End If
Next

'awverage panel esxposure angle
gverage = average [ 3

panels_heatii]=panels_heatii]fiubuundisuurce_vecturs_sunj+1]
If generation=maxgens Then

red=255 % panels heat (i)

green=0

blus=Z55 - 255 * panels heat (i)

arrcolors (i) =rghired, green, blue)
End If

MNe=xt

1zea0
1261
1262
1263
1264
1265
1266
12687
12685
1269
1270
1271
1272
1273
1274
1275
1276
1277
1275
1279
1280
1281
1282
1283
1284
1285
1286
1287
1285
1289
1290
1291
1292
1293
1294
1295
1296
1297
1295
1299
1300
1301
1302
1303
1304
1305
1306
1307
1305
1309
1310
1311
131z
1313
1314
1315
1316
1317
1315
1319
1320
1321
13z2

End

Sub

End

Sub

If generation=maxgens Then
Fhino.MeshVertexColors panels, arrcolors
End If

Sub

get sun Solar gaini(ByWal panels heat hody()],
_ByVal panels heat capi),ByFef sunfitness)

Dim 1
Lim panel fitness
Dim max

max=ubound (pansls heat body) +ubound (pansels heat cap) +2

For i=0 To whound (panels heat body)
If panels heat body(i)>0.6 Then
pansl fitness=1'panels heat body (i)
sunfitness=sunfitness+panel fitness
End If
Ne=xt

For i=0 To vbound (panels heat cap)
If panels heat cap(i)>0.6 Then
panel fitness=1'panels heat cap(i]
sunfitness=sunfitness+panel fitness
End If
Ne=xt

sunfitness=sunfitness/max
'sunfitness=1l-sunfitness=

Sub
make cpe a [(ByRef cpe afl))

cpe _a(0,0)=array (20, array(1,0]]

cpe a(0,1)=array (90, array(1.07,15]]
cpe a(0,2)=array (90, array(1.10,30]]
cpe a0, 3)=array (90, array(1.12,45)]
cpe _a(0,4)=array (90, array(0.54,60] ]
cpe_a(0,5)=arrayi20,array(-1.10,75]]
cpe a0, 6)=array (20, array(-1.30,90]]
cpe_a(0,7)=arrayi(20,array(-0.5,105] ]
cpe_a(0,8)=array (90, array(-0.63,120] )
cpe a0, =array (90, array(-0.50,135] ]
cpe_a(0,10)=array (30,array(-0.34,150) ]
cpe_a(0,11)=array(20,array(-0.30,165) ]
cpe a0, 12)=array (20,array(-0.34,180) ]

cpe a(l,0)=arrayi?5,array(0.58,0]]
cpe af(l,l)=array|(75, array(0.71,15]]
cpe a(l,Z)=array|(75, array(0.85,630]]
cpe _afl,3)=array (75, array(0.82,45]]
cpe _ail,d)=array (75, array(0.78,60]]
cpe_a(l,5)=arrayi75,array(-1.10,75]]
cpe_all,6)=arrayi75,array(-1.21,90)]
cpe_a(l,?)=array|75,array(-0.58,105) ]
cpe_a(l,8)=array (75, array(-0.63,120))
cpe_a(l,?) =array (75, array(-0.50,135]]
cpe_a(l,10)=array(?5,array(-0.34,150) ]
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1323
1324
1325
1326
1327
1325
13=9
1330
13351
133=
1333
1354
1335
13356
1337
1335
13359
1340
1541
1342
13435
1544
1345
1346
1547
1345
13459
1350
15351
1352
13535
15354
1355
1356
1357
1355
1355
1360
1361
1362
1363
1564
1385
1366
1387
1365
1365
1370
15371
1372
1373
15374
1375
1376
1377
1375
1379
1380
1381
1382
13835
1584
1385

cpe all,ll)=array(?5,array(-0.30,165]]
cpe all,l2)=array(?5,array(-0.34,180] ]

cpe a(Z,0)=arrayiel,array(0.50,0]]

cpe a(Z,l)=array(60,array(0.63,15]]
cpe a(Z,Z)=array(60,array(0.77,30])
cpe & (Z,3)=array(60,array(0.658,45])
cpe a(Z,4)=array(60,array(0.59,60]]
cpe a(Z,5) =arrayiel,array(-1.10,75]]
cpe a(Z,6)=arrayiel,array(-1.21,90]]
cpe a(Z,7)=arrayiel,array(-0.8,105]]
cpe a(Z,8)=array (60, array(-0.63,120])
cpe & (2,9 =array (60, array(-0.50,135])
cpe a(Z,l0)=array (60, array(-0.34,150]]
cpe alZ,ll)=array (60, array(-0.30,165]]
cpe alZ,l2)=array(6l,array(-0.34,180] ]
cpe &(3,0)=arrayi45,array(0.42,0]]

cpe a3, l)=array(45,array(0.53,15])
cpe a3, Z)=array(d45,array(0.65,30])
cpe & (3,3 =array(45,array(0.57,45] )
cpe a3, 4)=array(45,array(0.50,60])

cpe a3, 5 =arrayi45,array(-1.10,75]]

cpe a3, 6)=arrayi4s,array(-1.49,90]]
cpe & (3,7 =array(45,array(-1.15,105] ]
cpe & (3,8 =array(45,array(-1.05,120] )
cpe & (3,9 =array (45, array(-0.75,135])
cpe a3, 10)=array (45, array(-0.52,150] ]
cpe a3, 1l1)=array(45,array(-0.57,165] ]
cpe a3, 12)=array (45, array(-0.62,180] ]
cpe a(d,0)=array(30,array(-0.60,0]]
cpe aid,l)=array|3i0,array(-0.50,15]]
cpe a(d,Z)=array|(3i0,array(-0.40,30]]
cpe a(d,3)=array|3i0,array(-0.61,45]]
cpe a(d,d)=array|(3i0,array(-0.81,60]]
cpe a(d, 5 =array|3i0,array(-1.10,75]]
cpe a(d, 6)=array|(3i0,array(-1.54,90]]
cpe a(d,?) =array(30,array(-1.60,105] )

cpe a(d,8) =array (30, array(-1.69,120])
cpe a(d,9) =array (30, array(-1.43,135])
cpe a(d,10)=array(30,array(-1.17,150]]
cpe ald,11)=array(30,array(-0.96, 165] ]
cpe ald, 12)=array(30,array(-0.76,180] ]

cpe a5, 0)=array(ls, array(-0.590,0])

cpe a5, l)=arrayils, array(-0.76,15]]
cpe a5, Z)=arrayils, array(-0.63,30]]
cpe a5, 3 =arrayils,array(-1.12,45]]
cpe a5, 4)=arrayils, array(-1.57,60]]
cpe a5, 5 =arrayils,array(-1.53,75]]
cpe a5, 6)=arrayils,array(-1.51,90]]
cpe al(5,7) =array(l5,array(-1.97%,105] )
cpe a(5,8) =array(l5, array(-2.44,120])

cpe al(5,9) =array(l5,array(-2.60,135])
cpe a5, 10)=array (15, array(-2.75,150] ]
cpe a5, 11)=array (15, array(-1.92,165]]
cpe a5, l2)=array (15, array(-1.10,180] ]

cpe a(6,0)=arrayi5, array(-1.32,0]]
cpe a6, l)=array(5,array(-1.57,15]]
Cpe &(6,Z)=array(5,array(-1.75,30]]
cpe al6,3)=array (5, array(-1.90,45]]

1386
1387
1385
1389
1390
1391
1392
1393
1394
1395
1396
1397
1395
1399
1400
1401
1402
1403
1404
1405
1406
1407
1405
1409
1410
1411
1412
1413
1414
1415
1416
1417
1415
1415
1420
1421
1422
1423
1424
1425
1426
1427
1425
14z9
1430
1431
1432
1433
1454
1435
1436
1437
1435
1439
1440
1441
1442
1443
1444
1445
1446
1447
1445

End

cpe &b, d)=array(5,array(-2.05,60))
cpe &a(b,5) =array|(5,arrayi-1.85,75]]
cpe &b, 6)=array|(5,arrayi-1.65,90))
cpe a6, =arrayi5,array(-1.87,105) ]
cpe_&al6,8)=arrayi5,array(-2.10,120)]
cpe_&al(6,?) =arrayi5,array(-2.17,135)]
cpe_a(6,10)=array (S, array(-2.24,150])
cpe_alb,l1l)=array (S, array(-1.85,165])
cpe a6, 12 =array (S, array(-1.47,180))
cpe a(?,0)=arrayi0,array(-1.43,0)]
cpe a(?,l)=array(0,arrayi-1.56,15])
cpe a(?,2)=array(0,arrayi-1.70,30})
cpe a(?,3)=array(0,arrayi-1.85,415])
cpe_a(?,d)=array(0,array(-2.00,60))
cpe_a(?,5 =array(0,arrayi-1.73,75]]
cpe a(?,6)=array(0,arrayi-1.47,90))
cpe_a(?,?)=arrayi0,array(-1.73,105) ]
cpe_a(?,8)=arrayi0,array(-2.00,120) ]
cpe_a(?,9) =arrayi0,array(-1.85,135)]
cpe_&a(?,10)=array (0, array(-1.70,150))

cpe_a(?,11)=array (0, array(-1.56,165])
cpe_a(?,12)=array (0, array(-1.43,180))

Sub

Sub make cpe b (ByRef cpe k)]

cpe b(0,0)=array (20, array(1.0]]

cpe bi(0,1)=array (90, array(1.07,15])
cpe bi(0,2)=array (90, array(1.10,30))
cpe b0, 3)=array (90, array(1.12,45))
cpe b0, d)=array (90, array(0.53,60))
cpe b (0,5 =array (20, array (-0.73,75)]
cpe b0, 6)=array (20, array(-0.80,90) ]
cpe b (0,7 =array (90, array (-0.73,105))
cpe b(0,8)=array (90, array (-0.63,120))
cpe b (0,9 =array (90, array (-0.50,135))
cpe b (0,10 =array (30,array (-0.34,150) )

cpe bi(0,11)=array (30,array(-0.30,165) )
cpe b (0,12 =array (30,array(-0.24,180) )

cpe bi(l,0)=arrayi75,array(0.81,0))
cpe bil,1l)=array (75, array(0.82,15])
cpe bil,2)=array (75, array(0.83,30))
cpe bil,3)=array (75, array(0.69,415])
cpe bil,d)=array (75, array(0.55,60])
cpe bi(l,5)=array |75, array(-0.73,75)]
cpe bil,6)=array |75, array(-0.80,90)]
cpe bil,7) =array (75, array (-0.73,105))
cpe bil,8)=array (75, array(-0.63,120))
cpe bi(l,9)=array (75, array(-0.50,135))
cpe b(l,10)=array (7?5, array(-0.34,150) )

cpe bi(l,11)=array(?5,array(-0.30,165) ]
cpe bil,12)=array (7?5, array(-0.24,180) )

cpe b(Z,0)=arrayitl,array(0.57,0)]

cpe bi(Z,1)=array(6l,array(0.63,15])
cpe bi(Z,2)=array (60, array(0.79,30])
cpe bi(Z,3)=array (60, array(0.68,415])
cpe bi(Z,d)=array(6l,array(0.47,60])
cpe bi(Z,5)=arrayi6l,array(-0.73,75)]
cpe bi(Z,6)=arrayi6l,array(-0.80,90)]
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14459
1450
1451
1452
1453
1454
1455
1456
1457
1455
14559
1460
1461
1462
1463
1464
1465
1466
1467
1465
1469
1470
1471
1472
1473
1474
1475
1476
1477
1475
1479
1480
1481
1452
14535
1454
1485
1486
1487
1485
14859
1490
1491
1492
1493
1494
1495
1496
1497
1495
1499
1500
1501
150z
1503
1504
1505
1506
1507
1505
1509
1510
1511

cpe biZ,7)=array (60, array(-0.73,105])
cpe biZ,8)=array (60, array(-0.63,120])
cpe biZ,9) =array (60, array(-0.50,135])
cpe biZ,10)=array(60,array(-0.34,150]]
cpe biZ,11)=array(60,array(-0.30,165]]
cpe biZ,12)=array(60,array(-0.24,180] ]

cpe bi3,0)=array(45, array(0.50,0]]
cpe bid,1)=array (45 array(0.53,15]]
cpe bi3,2)=array (45, array(0.78,30])

cpe bi3,3)=array (45, array(0.57,45] )
cpe bid,4)=array (45, array(0.45,60])
cpe bi3, 5 =array(45, array(-0.73,75]]
cpe bi3, 6] =array(45, array(-0.81,90]]
cpe bi3, 7 =array (45, array(-0.85,105] ]
cpe bi3,8)=array (45, array(-1.29,120])
cpe bi3,9) =array(45, array(-0.75,135]]
cpe bi3,10)=array (45, array(-0.50,150] ]
cpe bi3,11)=array (45, array(-0.54,165] ]
cpe bi3,12)=array (45, array(-0.58,180] ]
cpe bi4,0)=array (30, array(-0.50,0]]
cpe bid,l)=array(30,array(-0.50,15]]
cpe bid, 2] =array(30,array(-0.50,30]]
cpe bid,3)=array(30,array(-0.50,45]]
cpe bid, 4] =array(30,array(-0.50,60]]
cpe bid,5)=array(30,array(-0.72,75]]
cpe bid, 6] =array(30,array(-0.94,30]]
cpe bid,7)=array(30,array(-1.60,105])
cpe bi4,8)=array (30, array(-2.33,120])
cpe bi4,9)=array(30,array(-1.6%7,135]]
cpe bi4,10)=array(30,array(-1.02,150]]
cpe bid,11)=array(30,array(-0.85,165]]
cpe bid4,12)=array(30,array(-0.658,180] ]
cpe bi5,0)=array (15, array(-0.83,0]]
cpe bi5,1)=array(l5, array(-0.85,15]]
cpe bi5, 2] =array(l5, array(-0.88,30]]
cpe bi5,3)=array(l5, array(-0.87,45] ]
cpe bi5,4)=array(l5, array(-0.86,60] ]
cpe bi5,5)=array(1l5, array(-0.85,75] ]
cpe bi5, 6] =array(l5, array(-0.584,90] ]
cpe bi5,7)=array(15, array(-1.9%,105] ]
cpe bi5,8)=array (15, array(-2.15,120])
cpe bi5,9)=array (15, array(-2.22,135])

cpe bi5,10)=array (15, array(-2.37,150]]
cpe bi5,11)=array (15, array(-1.71,165]]
cpe bi5,12)=array(15,array(-1.05,180] ]

cpe bi6,0)=array(5,array(-1.24,0]]
cpe bi6,l)=array(5,arrayi-1.44,15]]
cpe bi6,2)=array(5,arrayi-1.64,30])
cpe bi6, 3] =array(5,arrayi-1.45,45])
cpe bi6,4)=array(5,arrayi(-1.33,60])
cpe bi6, 5 =array(5,arrayi(-1.08,75]]
cpe bi6, &) =array(5,array(-0.83,90])

cpe bi6, V) =array(5,array(-1.20,105]]
cpe bi6,8)=array(5,array(-1.57,120]]
cpe bi6,9) =array(5,array(-1.74,135]]

cpe bi6,10)=array (5, array(-2.21,150])
cpe bi6,11l)=array(5, array(-1.85,165]]
cpe bi6,12)=array (5, array(-1.6%,180] )

151z
1513
1514
1515
1516
1517
1515
1519
15z0
1521
1522
1523
1524
1525
1528
1527
1525
1529
1530
1531
1532
1533
1534
1535
1538
1537
1535
1539
1540
1541
1542
1543
1544
1545
1546
1547
1545
1549
1550
1551
1552
1553
1554
1555
1558
1557
1555
1559
1560
1561
1562
1563
1564
1565
1566
1567
1565
1569
1570
1571
1572
1573
1574

End

cpe b7, 0)=arrayi0,arrayi-1.25,0]]

cpe bi?,1)=arrayi0,array(-1.50,15]]
cpe b7, 2)=arrayi0,array(-1.70,30)]
cpe b7, 3)=arrayi0,array(-1.50,45]]
cpe bi?,3)=arrayi0,arrayi-1.24,60)]
cpe b7, 5 =arrayi0,array(-1.00,75]]
cpe b7, 6)=arrayi0,array(-0.75,20)]
cpe b7,V =arrayi0,array(-1.00,105] ]
cpe b7, 8 =arrayi0,arrayi-1.24,6120] ]
cpe bi7,9 =arrayi0,arrayi-1.50,135] ]

cpe bi7,10)=array (0, array(-1.70,150)
cpe bi7,11)=array (0, array(-1.50,165] ]
cpe bi7,12)=array (0, array(-1.25,180)

Sub

Sub make cpe o (ByRef cpe o))

cpe ci0,0)=array 20, array(0.83,0]]
cpe ci0,1)=arrayi20,array(0.68,15]]
cpe ci0,2)=arrayi90,array(0.49,30)]
cpe ci0,3)=arrayi90,array(0.34,45)]
cpe ci0,3)=arrayi90,array(0.26,60]]
cpe ci0,5) =arrayi90,array(0.23,75]]
cpe ci0,6)=arrayi90,array(0.20,90)]
cpe ci0,7) =array 20, array(-0.26,105]
cpe ci0,8)=array 20, array(-0.259,120) )
cpe ci0,9) =array 20, array(-0.33,135) ]
cpe ci(0,10)=array (90,array(-0.32,150] ]
cpe ci0,11)=array(30,array(-0.25,165) ]
cpe ci0,12) =array(90,array(-0.24,180] |

cpe cil,0)=arrayi?5, array(0.81,0]]
cpe cil,l)=arrayi¥5, array(0.82,15]]
cpe cil,Z)=arrayi¥5, array(0.83,30))
cpe cil,3)=arrayi¥5,array(0.68,45)]
cpe cil,d)=arrayi¥5, array(0.55,60)]
cpe cil,5) =arrayi¥5, array(0.37,75]]
cpe cil,6)=arrayi¥5, array(0.20,90)]
cpe cil,?) =arrayi?5, array(-0.26,105)
cpe cil,8)=arrayi¥5, array(-0.259,120) )
cpe cil,9) =arrayi?5, array(-0.33,135) ]
cpe cil,10)=array(?5,array(-0.32,150] ]
cpe cil,11)=array(?5,array(-0.258,165) ]
cpe cil,12)=array (75, array(-0.24,180] ]

cpe ciZ,0)=arrayi6l, array(0.80,0]]
cpe cii,l)=arrayitl, array(0.70,15]]
cpe cii,Z)=arrayitl, array(0.62,30)]
cpe cii,3)=arrayitl,array(0.50,45)]
cpe cii,d)=arrayitl, array(0.35,60]]
cpe cii,5) =arrayit0,array(0.27,75]]
cpe cii,6)=arrayitl, array(0.20,90)]
cpe ciZ,7) =arrayi6l, array(-0.26,105] ]
cpe ciZ,8)=arrayi6l, array(-0.259,120))
cpe cii,9) =arrayi6l, array(-0.33,135]]
cpe ciZ,10)=array (60, array(-0.32,150] ]
cpe ciZ,11)=array(60,array(-0.25,165) ]
cpe ciZ,12)=array(60,array(-0.24,6180] ]

cpe o3, 0 =arrayid5, array(0.60,0]]
cpe cid,l)=arrayid5, array(0.57,15]]
cpe cid,2)=arrayid5, array(0.55,30)]
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1575
1576
1577
1575
1575
1580
15581
15582
1583
1554
1585
1586
1587
1585
1585
1550
15591
15592
1593
1554
15595
15596
1597
1595
15595
1600
1601
1602
1603
1604
1605
1606
1607
1605
1609
1610
1611
161z
1613
1614
1615
16ia
1617
1615
1615
1620
1621
1622
1623
1624
1625
1626
1627
1625
1629
1630
1631
1632
1633
1634
1635
1636
1637

cpe cid, 3 =array (15, array (0.
cpe cid, 3] =array (15, array (0.

cpe o3, 5 =array (45, array(-0.
cpe ci3, 6] =array (45, array(-0.
cpe o3, =array (45, array(-0.
cpe o3, 8 =array (45, array(-0.
cpe ci3,9 =array (45, array(-0.

cpe o3, 10)=array (45, array (-
cpe o3, 11l)=array (45, array (-
cpe o3, 12 =array (45, array(-

cpe cid,0]=array (30, array(-0.
cpe cid, 1) =array (30, array(-0.
cpe cid, 2] =array (30, array(-0.
cpe cid, 3] =array (30, array(-0.
cpe cid, 3] =array (30, array(-0.
cpe cid, 5 =array (30, array(-0.
cpe cid, 6] =array (30, array(-0.
cpe cid, 7 =array (30, array(-0.
cpe cid,8) =array (30, array(-1.
cpe cid,9) =array (30, array(-1.

cpe cid,10)=array (30, array(-
cpe cid,11)=array(30,array(-
cpe cid,12)=array (30, array(-

cpe ci5,0]=array (15, array(-0.
cpe ci5,1)=array (15, array(-0.
cpe o5, 2] =array (15, array(-0.
cpe ci5,3) =array (15, array(-0.
cpe o5, 3] =array (15, array(-0.
cpe o5, 5 =array (15, array(-0.
cpe o5, 6] =array (15, array(-0.
cpe o5, =array (15, array(-0.
cpe ci5,8) =array (15, array(-1.
cpe ci5,9 =array (15, array(-1.

cpe coi5,10)=array (15, array (-
cpe o5, 11)=array (15, array (-
cpe o5, 12) =array (15, array (-

cpe ci6,0) =array(5,array(-1.
cpe ci6,1l)=array(5,array(-1.
cpe ci6, 2] =array(5,array(-1.
cpe ci6,3) =array(5,array(-0.
cpe ci6, 3] =array(5,array(-0.
cpe ci6,5) =array(5,array(-0.
cpe ci6, 6] =array(5,array(-0.
cpe ci6,7) =array(5,array(-1.
cpe ci6,8) =array(5,array(-0.
cpe ci6,9) =array(5,array(-0.
cpe c(6,10)=array (5, array (-1
cpe ci6,11l)=array (5, array(-1
cpe o6, 12)=array (5, array(-1

cpe ci7f, 0] =array(0,array(-1.
cpe cif,1l)=array(0,array(-1.
cpe ciYf, 2 =array(0,array(-1.
cpe ciY, 3 =array(0,array(-0.
cpe ci7f, 3 =array(0,array(-0.
cpe ci7f, 5 =array(0,array(-0.
cpe cif, 6] =array(0,array(-0.
cpe ciY, 7 =array(0,array(-0.
cpe ci7, 8 =array(0,array(-0.
cpe ci7f, 9 =array(0,array(-0.

47,45
30, 600
1,751
33,900
g4, 105
96, 120)
75,135
0.55,150)
0.43, 165
0.41, 180)

50,00
50,15) )
50,300
45,45
40, 600
30,75
20,90) )
70, 105)
22,1200
00, 135 )
0.79,150)
0.65, 165
0.50, 180)

81,00
52,15
53,300
70, 45)
g1, 607
45,75
27,900
85, 105
0z, 1z0)
01,135
1.00,150) )
1.96, 165) )
0.9z, 180)

12,07
14,15
09,300
o0, 45)
71, 600
50,75
25,900
55, 105)
77,1200
92,135
.04, 150) )
.08, 165) )
L1z, 1800

15,07

09, 15) ]
03,300
54,45
g4, 607 )
44, 75
24,90
44, 105)
54,1200
54,135

1635
1639
1640
1641
ladz
1643
lad4d
1645
lada
1647
1645
la49
1a50
1a51
la5z
1653
la54
1655
la56
1a57
1655
la59
laad
laal
laaz
1663
laad
laa5
laa6
laa?
laas
laas
1a70
1671
1672
1673
1la74
1675
la76
1677
1675
1a79
1650
1651
la32
1633
la54
1685
lag6
1657
16585
1lag9
16320
1691
1692
1693
1694
16395
la96
1637
1695
1a99
1700

cpe o (7,10 =array (0, array(-1.03,150])
cpe o (7, 11)=array (0, array(-1.09,165])
cpe o (7,12 =array (0, array(-1.15,180])

End Sub

Sub bounding box (ByWal panels body, ByWal source vectors wind() ,ByRef &, EBvyRef b)

Dim arrBox, arrPoint, intCount

arrBox = Bhino.BoundingBox (panels body)
! intCount = 0

1

! For Each arrPoint In arrBox

1

! Ehino.addTextDot CotriintCount), arrPoint
1

! intCount = intCount + 1

! MNext

Dim rear length,=zide length

If =zource wvectors wind (0] (0)=1 Then

rear length=rhino.Distance (arrbox (0] ,arrbox i3] ]

gide length=rhino.Distance (arrbox (0] ,arrboxil]]

If =ide length-rear length Then
a=arrayiiarrbnxi1](D]—rear_lengthHSJ,arrbnxil]il],arrbnx(l]izjj
b=array| (arrbox (1) (0] -rear length),arrbox (1] (1) ,arrhox (1] (2]]
! Ehino.addTextDot "a™, a
! Bhino.addTextDot "™, b

El=e
a=arrayiiarrbnxi1](D]—rear_lengthHSJ,arrbnxil]il],arrbnx(l]izjj
! Ehino.addTextDot "a™, a

End If

End If

If source wvectors wind(0) (1)=1 Then

End

End Sub

rear length=rhino.Distance (arrbox (0], arrboxil] ]
gide length=rhino.Distance (arrbox (1] ,arrboxid] ]

If =ide length-rear length Then
a=arrayiarrbuxi2]iD],iarrbnxiE]il]—rear_lengthﬁS],arrbnxizji2]]
b=arrayiarrbox (2] (0], (arrbox (2] (1] -rear length),arrhox (2] (2])]

! Ehino.addTextDot "a™, a
! Bhino.addTextDot "™, b

El=e
a=arrayiiarrbnxi2](D]],arrbnxizj(lj—rear_lengthHS,arrbe(2]i2]]
! Ehino.addTextDot "a™, a

End If
If

Sub dot wind (EyWal panels,ByWal panels normi)

ByRef panels pressure (] ByVal source wvectors windi)
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1701 _,ByVal cpe_a,ByVal cpe b,ByVal cpe ci),ByVal a 1764 'awerage panel exposure angle

1702 _ ,BvWal b,EBvVWal index,EBv¥Wal generation) h 1765 'panels pressure (i) =panels pressure (i} /3

1703 1766 B h

1704 Dim 1,3 1767 If generation~waxgens-1 Then

1705 Dim rob walue 1765 panels pressure norm= (panels pressure(i)+2.75%dynamic pressure)/
1706 Dim red, green,blus 1769 _11.12%dynamic pressure+i.?5%dynamic pressure) h h
1707 Dim incident angle beta, incident angle teta 1770 B

1708 If generation=waxgens—-1 Then - 1771 If panels pressure (i) <-0.79%dynamic pressure Then
1709 Dim arrcolrsi() 1772 arrcolors (i) =rgh(0,0,0) h

1710 RFelim arrColors| Rhino.MeshVertexCount (panels)-1 17773 El=e

1711 DIim panels pressure norm 1774 red=255 * panels pressure norm

1712 End If 1775 green=255-255 * panels prgssure norm

1713 1776 blue=255 * panels_pres;ure norm

1714 Dim cpe wvalue 1777 arrculnrs(ij=rgb(red;green:bluej

1715 Dim alfa.beta, teta 1775 End If

1716 1779

1717 Dim panels norm teta(2) 1780 End If

1718 Dim wertices 1781

1719 Dim checkl,checks 1752 Mext

1720 1783

1721 vertices=rhino.MeshVertices (panels) 1754 If generation=maxgens-1 Then

17232 1785 Fhino.MeshVertexColors panels, arrcolors

1723 For i = 0 To UBound(panels norm) 1786 End If

D e - 17387

1725 panels norm teta(0)=panels normii) (0] 1788| | End Sub

1726 panels norm teta(l)=panels norm(i] (1] 1789

1727 panels norm tetalz) =0 1790 Sub get cpe (ByWal panels normi) , ByWal cpe()  ByVal alfa, ByVal teta,ByRef cpe walue)
17285 1791

1729 For 7 = 0 To uboundisource vectors wind) 1792 Dim 1i,3

1730 B B 1793 Dim dif ()

1731 incident angle teta =rhino.VectorDotProduct 1754 Felim dif alfai?) , dif tetarlz)

1732 _ (panels_nDrHLtEta,suurce_vectnrs_wind(jT] 1795 Dim index =slfs, index teta

1733 alfa=rhino.ACos (panels norm(i) (2)) *180/rhino.Pi 1796

1734 teta=rhino. ACos (incident angle teta) *180/rhino. Pi 1797 If panels normiz) >0 Then

1735 B B L1 B

1736 If isempty(b)=False Then 1799 For i=0 To 7

1737 1500 dif alfa(i)=array(abs(alfa-cpe(i, 0] (0)], 1]

1738 If wvertices (i) (index) >=aiindex] Then 1501 Next

1739 et _cpe panels norm(i),cpe_a,alfa, teta,cpe value 1802

1740 Else B B B 1803 sort nmunber dif alfa

1741 get cpe panels norm(i),cpe b,alfa, teta, cpe walue 1504 index alfa=dif alfa(0) (1)

1742 End If a - - 1805

1743 1506 El=ze

1744 Else 1507 index alfa=0

1745 1505 End If

1746 If vertices (i) (index)>=a(index) Then 1309

1747 get cpe panels normii),cpe_a,alfa, teta,cpe value 1510 For j=0 To 12

1745 End If - - 1811 dif_teta(jj=array(abs(teta—cpe(index alfa,3) (111,73
1749 1812 Next h

1750 If (vertices (i) (index)<a(index) And vertices (i) (index)>b(index)) Ther 1813

1751 get cpe panels normii),cpe b, alfa,teta,cpe value 1514 sort_nurber dif tets

1752 End If B B - 15815 index teta=dif tetai(O) (1)

1753 1816 B B

1754 If vertices (i) (index) <=b(index) Then 1817 cpe wvalue=cpeiindex alfs, index teta) (1) (0)

1755 et _cpe panels norm(i),cpe o, alfa, teta,cpe value 1318

1756 End If 1519

1757 1520 End Sub

17585 End If 1521

1759 15822 Sub get mesh faces area (ByWal panels body, ByWVal panels cap,
1760 panels pressure (i) =panels pressure(i)+cpe value*dynamic pressure 1523 _ ByEef mesh faces area body() ,EByRef mesh_faces_a;ea_c;p(]]
1761 1524

1762 Hext 1825 Dim i, 3

1763 1526 Diw arrfaces




1827 Dim arrface(d) 1290 arrFace(l) = arrFaces(i+l)

15285 Dim arrcenters 1591

1829 Dim arrnormals 1892 arrFace(2) = arrFaces(i+2)

1830 Dim weubl, wvaubhi  wauhsl 1893

1831 Dim worthol, worthod , worthos 1894 arrFace (3] = arrFaces (i)

1832 Diw dotl,dotd, dot3 1895

1833 1896 'arrvertices (0)=arrav(0,1,2,2)

1834 arrfaces = Rhino.MeshFaces(panels body, False) 1897 '"Bhino. AddMesh arrFace,arrvertices

1835 arrcenters = Rhino.MeshFaceCentersipanels body) 1898

1836 arrMormals = Rhino.MeshFaceNormalspanels body) 1899 j=i+1

1837 1900 i=i + 3

1838 i=0 1901

1839 I=-1 1902 wvaubl=Fhino.VectorSubtract (arrface (0], arrcenters(]))
1240 1903 vaubiZ=Fhino.VectorSubtract (arrface(l), arrcenters(]))
1841 While i <= UBoundiarrFaces) 1904 waub3i=Fhino.VectorSubtract (arrface (2], arrcenters(]))
1542 1905

1843 arrFace(0) = arrFaces(i) 1906 vorthol=Rhino.VectorCrossProduct (wsubl, arrnormals(]) )
1844 1907 vorthoZ=Rhino.VectorCrossProduct (wsubZ, arrnormals(]) )
1845 arrFace(l) = arrFacesii+l) 1908 vorthoi=Rhino.VectorCrossProduct (wsubld, arrnormals(]) )
1846 1909

1847 arrFace(2) = arrFacesi(i+2) 1910 dotl=Rhino.VectorDbotProduct (wasubhl, worthol)

1848 1911 dotZ=Rhino.VectorDbotProduct [(wvaubhi, worthol)

1849 arrFace (3] = arrFaces (i) 1912 doti=Rhino.VectorbotProduct (wasubh3, worthol)

1850 1913

1851 'arrvertices (0)=arravil,1,2,2) 1914 Felim Preserwve mesh faces area cap(])

1852 '"Bhino. AddMesh arrFace,arrvertices 1915

1853 1916 wmesh faces area cap(j)=[(dotl+dotZ+dotid) “0.5

1854 J=3+1 1917

1855 i=i + 3 1918 Wend

1856 19149 End Suhb

1857 wvasubl=Fhino.VectorSubtract (arrface (0], arrcentersi(3)) 1920

1858 vaubZ=Fhino.VectorSubtract (arrface(l), arrcentersi]3)) 1921 Sub get wind fitness (BEyWal panels body, ByWal panels cap, ByWal panels pressure body (),
1859 wvaub3i=Fhino.VectorSubtract (arrface (2], arrcentersi])) 1922 _ByWal panels pressure cap(),ByFef individual wind fitness, ByWal generation)
1860 1923

1861 vorthol=Rhino.VectorCrossProduct (wvsubl, arrnormsalsi]) ) 1924 Dim i,3,k.1

1862 vorthoZ=Rhino.VectorCrossProduct (wvsubZ, arrnormalsi]) ) 1925 Dim mwax

1863 vorthoi=Rhino.VectorCrossProduct (wsubd, arrnormalsi]) ) 1926

1864 1927 max=ubound (pansls pressure body) +ubound (pansls pressure cap)
1865 dotl=Rhino.VectorDotProduct (waubhl, worthoZ) 1928

1866 dotZ=Rhino.VectorDotProduct (waubhZ, worthol) 1929 For i=0 To uhbound(pansels pressure body)

1867 dot3i=Rhino.VectorDotProduct (waubh3, worthol) 1930 If [abs(panels pressure body (i) | >0.6%dynamic pressure) Then
1565 1931 individual wind fitness=indiwvidual wind fitness+l
1869 Felim Preserwve mesh faces area body(]) 1932 End If

1870 1933 Next

1871 mesh faces area body(j) =i(dotl+dotZ+dot3) 0.5 1934

1872 1935 For i=0 To uhound(panels pressure cap)

1873 Wend 1936 If [abs(panels pressure body (i) | >0.6%dynamic pressure) Then
1574 1937 individual wind fitness=indiwvidual wind fitness+l
1575 Erase arrfaces 19385 End If

1576 Erase arrcenters 1939 MNext

1577 Erase arrnormals 1940

15785 1941 individual_wind_fitness=individual_wind_fitnessfmax

1879 arrfaces = Ehino.MeshFaces (panels cap, False) 1942 "individual wind fitness=l-individual wind fitness

1880 arrcenters = Rhino.MeshFaceCenters (panels cap) 1943

1881 arrMormals = Bhino.MeshFaceNormals (panels cap) 1944 If generations>3 And generation<int (maxgens/2) Then

1882 1945 rhino.Deletelbject panels body

1883 i=0 1946 rhino.DeleteCbject panels cap

1884 j=-1 1947 End If

1885 1948

1886 While i <= UBoundiarrFaces) 1949 End Sub

1887 1950

1888 arrFace(0) = arrFaces(i) 1951 Sub get wind force [(ByWal panels hody, ByWal panels cap,ByWal panels pressure body(),
1889 1952 _ EvWal panels pressure cap(] ByWal panels norm body(]




1953 _ ;ByVal panels norm capi),ByRef mesh faces area bodyi(), 2016

1954 _ EvRef wesh faces area cap(),ByVal num u body, E¥yVal num v cap) 2017 'norm height centroid

1955 T 2018 centrnid_height_nurm=(individual_vul_centruid(23—min_vulume_centrnid_heightjH
1956 2019 _imax wvolume centroid height-min volume centroid height) h
1957 Dim i,]3,k,1 2020 'norm curvature

1955 Dim arrvertices body,arrvertices cap 20z 1 wax curv=1/individual min curv radius

1959 Dim foree body(2), force cap(Z), force wind tot(2) 20zz maX CUrv normsmax curv/max curv limit

1950 arrVertices body = Rhino.MeshVertices (panels body) 2023 'morm FA R

1961 arrWVertices cap = BRhino.MeshWVertices (panels cap) 2024 facade to floors ratio norm=facade to floors ratio/facade to floors ratio max
1962 h - 2025 'norm height -
1963 k=0 2026 height_nurm=individual_heightfmax_height

1954 2027

1965 For i=0 To uboundpanels norm body) -num u body 2028

1966 panels norm bodyi(i)=rhino.VectorReverse (panels norm body(i)) 20z9 ——
1967 - - 2030

1965 For j=0 To 2 2031 U_Dver_FA=individual_vnlume(DjHindividual_facade_area(Dj
1969 force body(j)=force bodyij) +(panels norm body(i) (j) *panels pressure body|(i2032 V over FT=indiwvidual wvolume (0)/individual footprint (0]
1970 _#imesh faces area body(l)+wesh faces area bodyil+l)) h h 2033 V over Fl norm=(V over FL-V over facade Area min)/

1971 Next h 2034 _ iV _over Facade Area max-V over Facade Area min)
1972 MNext 2035 _ V _over FT normw=(V_over FT-V over Footprint ares min)
1973 2036 _ H(U_Dver_FDDtprint_arEa_max—U_Dver_FDDtprint_area_minj
1974 1=0 2037

1975 2038 f1=(U_Dver_FA_nDrmj*D.5

1976 For i=0 To ubound|panels norm cap) - (hum v cap+l) 2039 f&= |V over FT norm)*0.5

1977 panels norm cap (i) =rhino.VectorReverse (panels norm cap(i) ) 2040

1275 If (i) Mod (num v cap+l))<>0 Then h 2041 PPt T Height of Centroid ' 0!

13979 For j=0 To 2 204z fi=centroid height norm"2

1980 force cap(j)=force cap(j)+ipanels norm cap(i) (j) *panels pressure cap(iz043 PrEYY max curw 000

1951 __"imesh faces area cap(l) +mesh faces area cap(l+1)) 20434 If absimax curv norm) <1 Then

1952 Next h h 2045 f4=(l-abs (max curv norm) )&

1933 End If 2046 El=se

1954 Next 2047 £4=0

19385 2045 End If

19386 For i=0 To 2 2049

1337 force wind tot (i) =force body(i)+force cap(i) 2050 Pttt solar gain'ttt!

1988 Next h 2051 £5= (individual solar gain) 2

1339 2052 Pttt gind fitness'trrrone

1990 ! For i=0 To 2 2053 fe=(l-individual wind fitness)"2

1991 ! rhino.Print "force wind tot"eC3cr (i) &% PeCitr (force wind tot(i)) 2054

1992 ! Next a a h h 2055 ''1Y Facade to Floors ratio

1993 2056 If facade to floors ratio>x1 Then

1994 | End Zubk 2057 £7=0

1995 2055 El=se

1996 | £ 3ub fitness function [(EyRef indiwvidual fitness 2059 £f7=(1-facade to floors ratio norm) “2

1997 _,ByVal individual volume, ByWal individual footprint 2060 End If

1995 _,ByVal individual vol centroid, 2061

1999 _ ByRef indiwvidual height, ByVal individual facade area, 2062 ' percentage fitness!'' !

2000 _ByVal individual min curv radius, ByVal individual solar gain, 2063 tot=wl4+wZ+w3+uwd+us+wi+u?

2001 _ ByVWal individual wind fitness,ByVal Facade to Floors Ratio, h 2064 individual fitness=| (wl*f1+w2*£2+w3 *£3+wd*£4+uS*£5+we*£6+wT*£7) /tot) *100
2002 ByWal who, ByWVal generation) h 2065

2003 B 2066/ | End Sub

2004 Dim V¥V _over FA,V over FT 2067

2005 Dim V¥V _over FA norm,V over FT norm 2065 Sub sort number (ByRef alfa())

2006 Dim vol norm 2069

2007 Dim footprint norm 2070 Dim swap

2008 Dim facade area norm 2071 Dim i, ]

2009 Dim centroid height norm, centroid height 2072 Dim temp

2010 Dim height norm 2073

2011 Dim max Ccurv_ norm, max curv 2074 Do

2012 Dim facade to floors ratio norm 2075 swap = False

2013 Dim tot 2076 For i = 0 To UBoundialfa) - 1

2014 2077 If (alfa(i + 1) (01 < alfali) (0)) Then

2015 Dim £1,£2,£3,£4,£5, £6,£7, £5 2075 tewmp = alfa(i)




2079
2080
2081
2082
2083
2084
2085
2088
2087
20885
2089
2090
2091
2092
2093
2094
2095
2096
2097
2095
2099
2100
2101
210z
2103
2104
2105
2108
2107
2108
2109
2110
2111
211z
2113
2114
2115
2115
2117
2118
2119
21z0
2121
2122
2123
2124
2125
21zZ8
2127
2128
2129
2130
2131
2132
2133
2134
2135
2138
2137
2138
2139
2140
2141

alfaii) = alfa(i + 1)
alfaii + 1) = temp
swap = True

End If

MNext
Loop While (=wap)

End Suhb
Sub get height (BEyRef cap, height)

Dim surf domainu
Dim surf domainv
Dim point=ai)
Felim points(0)
Dim ustep

Dim u

Dim i

surf domainu=rhino.Zurfacelomaincap,0)
surf domainv=rhino.Zurfacelomaincap, 1)

ustep=(surf_dnmainu[1]—surf_dnmainu[D]]le
i=0

For u=surf domainui0) To surf domainuil]-ustep Itep ustep

pDintsii]=rhinD.EvaluateSurface[cap,array[u,surf_dumainv(l]HEJ]
i=i+l
Felim Preserwve pointsiuboundipoints) +1)

MNext

Felim Preserwve pointsiuboundipoints) -1
'rhino.AddPointCloud points

Sort _points = points
height=points (uboundipoints) ) (2]
End Sub

Sub sort points = (ByRef pointsi))

Dim =swap
Diw i, j
Dim temp
Do
swap = Falzse
For i = 0 To UBound(points) - 1
If (point=si(i + 1)1 (2) < pointsii) (2))
temp = pointai(i)
points(il = point=sii + 1)
point=(i + 1) = temwp
swap = True
End If

MNext
Loop While (=wap)

End Sub

Function mwean (ByBEef nwwbersi())

Dim 1

214z
2143
2144
2145
2146
2147
2145
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
216l
2162
2163
2164
2165
2166
21a7
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
217G
2179
2130
2181
2132
2183
2154
2185
2156
2187
2185
2189
2190
2191
2192
2193
2194
2195
2196
2197
2195
2199
2200
2201
2202
2203

End

Sub

Diirm =wm
Dim diwvision

For i=0 To ubound nurbers)

If isempty nurbers (il ) =False Then

sum=surm+nuribers (1)
division=division+1
End If
MNext

mean=sum/division

Function

excel output (ByWal suwfitness (), ByWal Vol over Facade mean() .
BEvWal wvol over Footprint mean(),
_ByWal Facade to Floors Ratio mean(),ByWal HeightCentroid mean(),

Eyval min curv radius mean()

__ ByVal solar gain meani),ByVal wind fitness mean(),
BEvWal mutation rate,ByWal words,EyVal scale noise factor |

Dim Excel
Dim Excellheet
Dim ExcellWorkbook

'Launch Excel

Jet Excel = createocbject ("Excel.bpplicatcion®™)

' Create a new workbook and find the active sheet.
Zet ExcelWorkbook = Excel.lorkbooks. Add
Zet Excellheet = Excel.botivelheet

Dim 1

For i=1 To ubound(sumfitness)

Excellheet.Cells (i, 15) .Value ="generation fitness™ & CI3Itr (i)

Excellheet.Cells (i, 15+1)

Excellheet.Cells (i, 15+2)

Excellheet.Cells (i, 15+4)

Excellheet.Cells (i, 15+86]

Excellheet.Cells (i, 1548)

Excellheet.Cells (i, 154+10)

Excellheet.Cells (i, 15+11).

Excellheet.Cells (i, 15+1Z2)

Excellheet.Cells (i, 15+13).

Excellheet.Cells (i, 15+14)

Excellheet.Cells (i, 15+15).

MNext

Salue

Malue
Excellheetc.Cells (i, 1543 .

Value

Walue
Excellheetc.Cells (i, 1545).

Value

Walue
Excellheetc.Cells (i, 1547).

Value

Walue
Excellheet.Cells (i, 1549).

Value

Walue
Value

Walue
Value

Walue
Value

= gsumfitness (1)

"ol over Facade mean™ & CICE (1)
Vol over Facade mean (i)

"ol over Footprint mean™ & C3tr (i)
vol over Footprint mean(i)

"HeightCentroid mean®™ & C3tr (i)
HeightCentroid mean (i)

=Mmin curv radius mean®™ £ C3tr(i)
=min curv radius mean(i)

="zolar gain mean® & C3tr (i)
=solar gain mean (i)

= M"yind exposure mean" & C3tr (i)
=wind fitness mean (i)

="Facade to Floors BRatio mean" & C3tr (i)
=Facade to Floors Ratio mean (i)
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2204 ExcelSheet.Cells ivbound (sumfitness) +1, 15) .Valuse = "mutation rate®

2205 Exceliheet.Cells ivbound (suwfitness) +1, 15+41) .Value = C5tr (mutation rate)

2206 Exceltheet.Cells (ubound (sumfithness) +2, 151 .WValue = Tgords"

2207 Exceltheet.Cells (ubound (sumfithness) +2, 15411 .Value = CoOtr (words)

2208 ExcelSheet.Cells ivbound (sumfitness) +3, 15) .Value = "scale noise factor”

2209 ExcelSheet.Cells ivbound (suwfitness) +3, 15+41) .Value = C3tr (2cale noise factor)

2210 Exceliheet.Cells (ubound (suwfitness) +4, 15) .Valus = "yl V owver FLT

2211 Exceltheet.Cells (ubound (sunmfithness) +4, 15+1) .Value = C3tr (wl)

2212 ExcelSheet.Cells ivbound (sumfitness) +5, 15) .Value = "wz V owver FY

2213 Exceltheet.Cells (ubound (sunmfithess) +5, 15+1) . Value = Cotr (w2

2214 ExcelSheet.Cells ivbound (sumfitness) +6, 15) .Value = "wi Height Centroid”

2215 Exceltheet.Cells (ubound (sunmfithess) +6, 15+1) .Value = CItr (w3

2216 ExcelSheet.Cells ivbound (sumfitness) +7, 15) .Value = "wd min curv radius”

2217 Exceltheet.Cells (ubound (sunmfithness) +7, 15+1) . Value = CStr (wd)

2218 ExcelSheet.Cells ivbound (sumfitness) +5, 15) .Valuse = "wS solar gain®

2219 Exceltheet.Cells (ubound (sumfithness) +3, 15+1) .Value = CItr (wh)

2220 ExcelSheet.Cells ivbound (sumfitness) +2, 15) .Value = "wi wind exposure”

2221 Exceltheet.Cells (ubound (sunmfithness) +9, 15+1) .Value = CICr (wo)

2222 Exceliheet.Cells ivbound (suwfitness) +10, 15) .Value = "7 FL R©

2223 Exceltheet.Cells (ubound (sumfithness) +10, 15411 .Walue = C3Str (w7

2224

2225

2226

2227 ExcelWorkbook.3avels "C:\Documents and Settingsgennarc' Desktop' EmTechhdissertation) galresultsh
2228 " norm fit values alfa_radiusHGA_infD_"& Tpop="LeC3tr (max pop) &7 gen="LiCSCE (maxKgens) £ wl=TLCStr iwl)
2229 _ £ wa=TACStr (w2) &7 wI=TLCEtr (w3) &7 wd=TECELr (wd] &7 wi=TECEStr (wh) £ wE=TEC3ty (wh) &7 wi="TaCItr juwd)
2230 _ £ pp=TLCEtE (numberof pointaper Section) &7 msf=TLC3tr (mutation sens factor) & wE=TLCEtr (wE) L&T.xls"
2231 Excel . ipplication.uit

2232

2233 End Suhb




